418 research outputs found

    Microscopically-based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    Get PDF
    In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2\chi^2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.Comment: 17 pages, 6 figure

    Odd-even mass differences from self-consistent mean-field theory

    Full text link
    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form C/A^alpha . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects; (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel; (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences.Comment: 13 pages, 9 figure

    Minimum mass of galaxies from BEC or scalar field dark matter

    Full text link
    Many problems of cold dark matter models such as the cusp problem and the missing satellite problem can be alleviated, if galactic halo dark matter particles are ultra-light scalar particles and in Bose-Einstein condensate (BEC), thanks to a characteristic length scale of the particles. We show that this finite length scale of the dark matter can also explain the recently observed common central mass of the Milky Way satellites (107M\sim 10^7 M_\odot) independent of their luminosity, if the mass of the dark matter particle is about 1022eV10^{-22} eV.Comment: 10 pages, 1 figure, accepted in JCA

    Condensation of Pairs of Fermionic Atoms Near a Feshbach Resonance

    Full text link
    We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold ^6Li gas at magnetic fields above a Feshbach resonance, where no stable ^6Li_2 molecules would exist in vacuum. We accurately determined the position of the resonance to be 822+-3 G. Molecular Bose-Einstein condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close distances into bound molecules. Condensate fractions as high as 80% were obtained. The large condensate fractions are interpreted in terms of pre-existing molecules which are quasi-stable even above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.Comment: submitted to PRL. v3: clarifying revisions, added referenc

    Tetrahedral Symmetry in Ground- and Low-Lying States of Exotic A ~ 110 Nuclei

    Full text link
    Recent theoretical calculations predict a possible existence of nuclei with tetrahedral symmetry: more precisely, the mean-field hamiltonians of such nuclei are symmetric with respect to double point-group Td. In this paper, we focus on the neutron-rich Zirconium isotopes as an example and present realistic mean-field calculations which predict tetrahedral ground-state configurations in 108,110Zr and low-lying excited states of tetrahedral symmetry in a number of N > 66 isotopes. The motivations for focusing on these nuclei, as well as a discussion of the possible experimental signatures of tetrahedral symmetry are also presented.Comment: Accepted in Phys. Rev. C - Rapid Communication

    Instabilities in the Nuclear Energy Density Functional

    Full text link
    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.Comment: Special issue "Open Problems in Nuclear Structure Theory" of Jour.Phys.G - accepted. 7 pages, 2 figure

    Cerenkov radiation and scalar stars

    Full text link
    We explore the possibility that a charged particle moving in the gravitational field generated by a scalar star could radiate energy via a recently proposed gravitational \v{C}erenkov mechanism. We numerically prove that this is not possible for stable boson stars. We also show that soliton stars could have \v{C}erenkov radiation for particular values of the boson mass, although diluteness of the star grows and actual observational possibility decreases for the more usually discussed boson masses. These conclusions diminish, although do not completely rule out, the observational possibility of actually detecting scalar stars using this mechanism, and lead us to consider other forms, like gravitational lensing.Comment: Accepted for publication in Class. Quantum Gra

    Coordinate-Space Hartree-Fock-Bogoliubov Description of Superfluid Fermi Systems

    Full text link
    Properties of strongly interacting, two-component finite Fermi systems are discussed within the recently developed coordinate-space Hartree-Fock-Bogoliubov (HFB) code {\hfbax}. Two illustrative examples are presented: (i) weakly bound deformed Mg isotopes, and (ii) spin-polarized atomic condensates in a strongly deformed harmonic trap.Comment: 4 pages, 2 figures, ENAM 2008 conference proceedings (EPJA
    corecore