11,661 research outputs found

    Wide-angle sun sensors

    Get PDF
    Two sensors have been developed: one, single-axis device, is cylindrical; the other, two-axis device, is spherical. Multiple surface deposits of photosensitive material, such as cadmium sulfide, serve as redundancy, ensuring high reliability

    Remote object configuration/orientation determination

    Get PDF
    This invention relates to object detection and location systems and, more particularly, to a method for determining the configuration and location of an object with respect to an X, Y, X coordinate frame. In space applications in particular, there is a need to be able to passively determine the orientation of an object at a distance, for example, in the control of large, flexible space structures. At present, there is no available method or apparatus which will allow the operator to make such a determination. A similar problem and need exists in robotic application. It is the primary object of this invention to provide a system for remotely defining an object's configuration in a manner compatible with a computer's analytical capability

    Antenna pointing compensation based on precision optical measurement techniques

    Get PDF
    The pointing control loops of the Deep Space Network 70 meter antennas extend only to the Intermediate Reference Structure (IRS). Thus, distortion of the structure forward of the IRS due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade blind pointing accuracy. A system is described which can provide real time bias commands to the pointing control system to compensate for environmental effects on blind pointing performance. The bias commands are computed in real time based on optical ranging measurements of the structure from the IRS to a number of selected points on the primary and secondary reflectors

    Trends in US Crop Yields & Water Use

    Get PDF
    Over half the land in the US is dedicated to agriculture, with the vast majority of all cropland cultivated in corn, wheat, or soybean. Despite continuing advances in agricultural technologies, and consistent yield growth over the twentieth century, research suggests that environmental change is already impacting agricultural yield and future changes are sure to exacerbate challenges to agricultural production. It follows that the future of US agriculture depends on the evolution of the changing climate, the relationship between crop yields and the environment, on-farm management and adaptations, the ecosystems that support agriculture, the political and economic incentives that shape what farmers grow and how they grow it, and the technology developed to improve yields. This study will focus on two pieces of the aforementioned agricultural puzzle—the relationship between crop yields and the environment, and water use management in irrigated agriculture. This study contributes to current literature by exploring trends in irrigated agriculture at the county-scale, and by examining the efficacy of Random Forest (RF) regression in predicting agricultural yield. Results from the second chapter, where we utilize exploratory mapping and data mining techniques to understand trends in irrigated agriculture in the Western US, are pending approval from the USDA-NASS and are not reported here. Alternatively, we build a practical guide to working with operator-level irrigation survey data. Results from the third chapter suggest that RF predicts US corn yields well and point to the importance of space and time in corn yield prediction, and the highly nonlinear response of corn yield to irrigation, climate, and agricultural diversity covariates. These results demonstrate the predictive capacity of RF regression to model complex corn yield responses to biophysical and landscape conditions and point to the power of building an ensemble of different models, each with their own strengths and weaknesses, to characterize and predict agricultural yield

    ECONOMIC THRESHOLDS: AN APPLICATION TO FLORICULTURE

    Get PDF
    This paper introduces conjunctive optimal pest management and production decision rules applied to the floriculture industry. A grower is faced with optimally controlling multiple pests and applying cultural controls to maximize the expected net present value of benefits within a discrete time framework, subject to biological and marketing constraints.Crop Production/Industries,
    • …
    corecore