2,999 research outputs found
On the spin-isospin decomposition of nuclear symmetry energy
The decomposition of nuclear symmetry energy into spin and isospin components
is discussed to elucidate the underlying properties of the NN bare interaction.
This investigation was carried out in the framework of the
Brueckner-Hartree-Fock theory of asymmetric nuclear matter with consistent two
and three body forces. It is shown the interplay among the various two body
channels in terms of isospin singlet and triplet components as well as spin
singlet and triplet ones. The broad range of baryon densities enables to study
the effects of three body force moving from low to high densities.Comment: 8 pages, 4 figure
Nuclear Pairing in the T=0 channel revisited
Recent published data on the isoscalar gap in symmetric nuclear matter using
the Paris force and the corresponding BHF single particle dispersion are
corrected leading to an extremely high proton-neutron gap of
MeV at . Arguments whether this value can be reduced due
to screening effects are discussed. A density dependent delta interaction with
cut off is adjusted so as to approximately reproduce the nuclear matter values
with the Paris force.Comment: 4 pages, 4 figure
Specific Heat of a Fractional Quantum Hall System
Using a time-resolved phonon absorption technique, we have measured the
specific heat of a two-dimensional electron system in the fractional quantum
Hall effect regime. For filling factors
and 1/3 the specific heat displays a strong exponential temperature dependence
in agreement with excitations across a quasi-particle gap. At filling factor
we were able to measure the specific heat of a composite fermion
system for the first time. The observed linear temperature dependence on
temperature down to K agrees well with early predictions for a Fermi
liquid of composite fermions.Comment: 4 pages, 4 figures (version is 1. resubmission: Added a paragraph to
include the problems which arise by the weak temperature dependence at \nu =
1/2, updated affiliation
Temperature dependence of single-particle properties in nuclear matter
The single-nucleon potential in hot nuclear matter is investigated in the
framework of the Brueckner theory by adopting the realistic Argonne V18 or
Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic
three-body force. The rearrangement contribution to the single-particle
potential induced by the ground state correlations is calculated in terms of
the hole-line expansion of the mass operator and provides a significant
repulsive contribution in the low-momentum region around and below the Fermi
surface. Increasing temperature leads to a reduction of the effect, while
increasing density makes it become stronger. The three-body force suppresses
somewhat the ground state correlations due to its strong short-range repulsion,
increasing with density. Inclusion of the three-body force contribution results
in a quite different temperature dependence of the single-particle potential at
high enough densities as compared to that adopting the pure two-body force. The
effects of three-body force and ground state correlations on the nucleon
effective mass are also discussed.Comment: 14 pages, 5 figure
Screening Effects on Pairing in Neutron Matter
The superfluidity of neutron matter is studied in the framework of
the generalized Gorkov equation. The vertex corrections to the pairing
interaction and the self-energy corrections are introduced and approximated on
the same footing in the gap equation. A suppression of the pairing gap by more
than 50% with respect to the BCS prediction is found, which deeply changes the
scenario for the dynamical and thermal evolution of neutron stars.Comment: 5 pages, 5 figres, RevTeX4 styl
- …