76 research outputs found

    Software platforms for quantitative proteomics

    Get PDF
    In recent years, it has become obvious that mRNA expression does not always correlate with protein expression. It seems that a full understanding of the complexity of life can only be obtained by examining abundances of proteins under varying conditions. Accurate measurements of these expression values is crucial. This field of research also requires new computational efforts since the data, often from mass spectrometry experiments, is very complex. We present two academic software platforms that offer means to reduce, analyse and compare protein expression data gained from liquid chromatography coupled with mass spectrometry. We outline their methodology and compare them to our own project, OpenMS, which is currently developed in our research group at the Free University Berlin in collaboration with the Kohlbacher group at Tuebingen University

    OpenMS - A Framework for Quantitative HPLC/MS-Based Proteomics

    Get PDF
    In the talk we describe the freely available software library OpenMS which is currently under development at the Freie Universität Berlin and the Eberhardt-Karls Universität Tübingen. We give an overview of the goals and problems in differential proteomics with HPLC and then describe in detail the implemented approaches for signal processing, peak detection and data reduction currently employed in OpenMS. After this we describe methods to identify the differential expression of peptides and propose strategies to avoid MS/MS identification of peptides of interest. We give an overview of the capabilities and design principles of OpenMS and demonstrate its ease of use. Finally we describe projects in which OpenMS will be or was already deployed and thereby demonstrate its versatility

    Cortical circuit alterations precede motor impairments in Huntington's disease mice

    Get PDF
    Huntington's disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronic in vivo two-photon calcium imaging to longitudinally monitor the activity of identified single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in cortical network function, with an increase in activity that affects a large fraction of cells and occurs rather abruptly within one week, preceeding the onset of motor defects. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and human HD autopsy cases reveal a reduction in perisomatic inhibitory synaptic contacts on layer 2/3 pyramidal cells. Taken together, our study provides a time-resolved description of cortical network dysfunction in behaving HD mice and points to disturbed excitation/inhibition balance as an important pathomechanism in HD

    An Optimized Data Structure for High Throughput 3D Proteomics Data: mzRTree

    Get PDF
    As an emerging field, MS-based proteomics still requires software tools for efficiently storing and accessing experimental data. In this work, we focus on the management of LC-MS data, which are typically made available in standard XML-based portable formats. The structures that are currently employed to manage these data can be highly inefficient, especially when dealing with high-throughput profile data. LC-MS datasets are usually accessed through 2D range queries. Optimizing this type of operation could dramatically reduce the complexity of data analysis. We propose a novel data structure for LC-MS datasets, called mzRTree, which embodies a scalable index based on the R-tree data structure. mzRTree can be efficiently created from the XML-based data formats and it is suitable for handling very large datasets. We experimentally show that, on all range queries, mzRTree outperforms other known structures used for LC-MS data, even on those queries these structures are optimized for. Besides, mzRTree is also more space efficient. As a result, mzRTree reduces data analysis computational costs for very large profile datasets.Comment: Paper details: 10 pages, 7 figures, 2 tables. To be published in Journal of Proteomics. Source code available at http://www.dei.unipd.it/mzrtre

    Statistical quality assessment and outlier detection for liquid chromatography-mass spectrometry experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quality assessment methods, that are common place in engineering and industrial production, are not widely spread in large-scale proteomics experiments. But modern technologies such as Multi-Dimensional Liquid Chromatography coupled to Mass Spectrometry (LC-MS) produce large quantities of proteomic data. These data are prone to measurement errors and reproducibility problems such that an automatic quality assessment and control become increasingly important.</p> <p>Results</p> <p>We propose a methodology to assess the quality and reproducibility of data generated in quantitative LC-MS experiments. We introduce quality descriptors that capture different aspects of the quality and reproducibility of LC-MS data sets. Our method is based on the Mahalanobis distance and a robust Principal Component Analysis.</p> <p>Conclusion</p> <p>We evaluate our approach on several data sets of different complexities and show that we are able to precisely detect LC-MS runs of poor signal quality in large-scale studies.</p

    Fluc-EGFP reporter mice reveal differential alterations of neuronal proteostasis in aging and disease

    Get PDF
    The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age‐related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP‐fused firefly luciferase (Fluc‐EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc‐EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc‐EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington’s disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc‐EGFP reporter mice enable new insights into proteostasis alterations in different diseases

    OpenMS – An open-source software framework for mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry is an essential analytical technique for high-throughput analysis in proteomics and metabolomics. The development of new separation techniques, precise mass analyzers and experimental protocols is a very active field of research. This leads to more complex experimental setups yielding ever increasing amounts of data. Consequently, analysis of the data is currently often the bottleneck for experimental studies. Although software tools for many data analysis tasks are available today, they are often hard to combine with each other or not flexible enough to allow for rapid prototyping of a new analysis workflow.</p> <p>Results</p> <p>We present OpenMS, a software framework for rapid application development in mass spectrometry. OpenMS has been designed to be portable, easy-to-use and robust while offering a rich functionality ranging from basic data structures to sophisticated algorithms for data analysis. This has already been demonstrated in several studies.</p> <p>Conclusion</p> <p>OpenMS is available under the Lesser GNU Public License (LGPL) from the project website at <url>http://www.openms.de</url>.</p

    Improved quality control processing of peptide-centric LC-MS proteomics data

    Get PDF
    Motivation: In the analysis of differential peptide peak intensities (i.e. abundance measures), LC-MS analyses with poor quality peptide abundance data can bias downstream statistical analyses and hence the biological interpretation for an otherwise high-quality dataset. Although considerable effort has been placed on assuring the quality of the peptide identification with respect to spectral processing, to date quality assessment of the subsequent peptide abundance data matrix has been limited to a subjective visual inspection of run-by-run correlation or individual peptide components. Identifying statistical outliers is a critical step in the processing of proteomics data as many of the downstream statistical analyses [e.g. analysis of variance (ANOVA)] rely upon accurate estimates of sample variance, and their results are influenced by extreme values
    corecore