1,880 research outputs found

    Theory of the Reentrant Charge-Order Transition in the Manganites

    Full text link
    A theoretical model for the reentrant charge-order transition in the manganites is examined. This transition is studied with a purely electronic model for the Mn electrons: the extended Hubbard model. The electron-phonon coupling results in a large nearest-neighbor repulsion between electrons. Using a finite-temperature Lanczos technique, the model is diagonalized on a 16-site periodic cluster to calculate the temperature-dependent phase boundary between the charge-ordered and homogeneous phases. A reentrant transition is found. The results are discussed with respect to the specific topology of the 16-site cluster.Comment: 3 pages, 2 ps figures included in text, submitted to the 8th MMM-Intermag conferenc

    THE_PM_BOK_CODE

    Get PDF
    This paper puts forward the argument that PM is spreading because it is a well adapted collection of memes, and that the Project Management Institute (PMI®) Guide to the Project Management Body of Knowledge (PMBOK® Guide) version of project management (the PM_BOK Code) has more to do with the appearance of a capability for productivity than it does with actual productivity. It suggests that project management is evolving in a toxic manner, and that corporations will reap more benefit from it than people. The paper concludes with a call for a reformation of the PMBOK®

    Metacognitive computations for information search: Confidence in control

    Get PDF
    The metacognitive sense of confidence can play a critical role in regulating decision making. In particular, a lack of confidence can justify the explicit, potentially costly, instrumental acquisition of extra information that might resolve uncertainty. Human confidence is highly complex, and recent computational work has suggested a statistically sophisticated tapestry behind the information that governs both the making and monitoring of choices. However, the consequences of the form of such confidence computations for search have yet to be understood. Here, we reveal extra richness in the use of confidence for information seeking by formulating joint models of action, confidence, and information search within a Bayesian and reinforcement learning framework. Through detailed theoretical analysis of these models, we show the intricate normative downstream consequences for search arising from more complex forms of metacognition. For example, our results highlight how the ability to monitor errors or general metacognitive sensitivity impact seeking decisions and can generate diverse relationships between action, confidence, and the optimal search for information. We also explore whether empirical search behavior enjoys any of the characteristics of normatively derived prescriptions. More broadly, our work demonstrates that it is crucial to treat metacognitive monitoring and control as closely linked processes

    Non-linear Hypothesis Testing of Geometric Object Properties of Shapes Applied to Hippocampi

    Get PDF
    This paper presents a novel method to test mean differences of geometric object properties (GOPs). The method is designed for data whose representations include both Euclidean and non-Euclidean elements. It is based on advanced statistical analysis methods such as backward means on spheres. We develop a suitable permutation test to find global and simultaneously individual morphological differences between two populations based on the GOPs. To demonstrate the sensitivity of the method, an analysis exploring differences between hippocampi of first-episode schizophrenics and controls is presented. Each hippocampus is represented by a discrete skeletal representation (s-rep). We investigate important model properties using the statistics of populations. These properties are highlighted by the s-rep model that allows accurate capture of the object interior and boundary while, by design, being suitable for statistical analysis of populations of objects. By supporting non-Euclidean GOPs such as direction vectors, the proposed hypothesis test is novel in the study of morphological shape differences. Suitable difference measures are proposed for each GOP. Both global and simultaneous GOP analyses showed statistically significant differences between the first-episode schizophrenics and controls

    Pierre Rosanvallon's Political Thought. Interdisciplinary approaches

    Get PDF
    Flügel-Martinsen O, Martinsen F, Sawyer S, Schulz D, eds. Pierre Rosanvallon's Political Thought. Interdisciplinary approaches. Bielefeld: Bielefeld University Press ; 2019.The work of Pierre Rosanvallon has increasingly found itself at the center of debates in democratic and political theory – although only few of his numerous monographs have thus far been translated from French. This interdisciplinary volume, the first comprehensive collection on his political thought in English, seeks to lay the groundwork for the study of this eminent political thinker and historian. Following a hitherto untranslated opening essay by Rosanvallon, the chapters – written from a variety of disciplinary perspectives including political theory, political science, philosophy, and history – cover a wide range of topics from the history of democracy to sovereignty, populism, and the function of the press in liberal democratic regimes

    A Note on Lower Bounds for Colourful Simplicial Depth

    Get PDF
    The colourful simplicial depth problem in dimension d is to find a configuration of (d+1) sets of (d+1) points such that the origin is contained in the convex hull of each set, or colour, but contained in a minimal number of colourful simplices generated by taking one point from each set. A construction attaining d2 + 1 simplices is known, and is conjectured to be minimal. This has been confirmed up to d = 3, however the best known lower bound for d ≥ 4 is ⌈(d+1)2 /2 ⌉. In this note, we use a branching strategy to improve the lower bound in dimension 4 from 13 to 14

    Characterizing Simultaneous Embeddings with Fixed Edges

    Get PDF
    A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same Jordan curve in the simultaneous drawings. While any number of planar graphs have a simultaneous embedding without fixed edges, determining which graphs always share a simultaneous embedding with fixed edges (SEFE) has been open. We partially close this problem by giving a necessary condition to determine when pairs of graphs have a SEFE

    Characterizations of Restricted Pairs of Planar Graphs allowing Simultaneous Embeddings with Fixed Edges

    Get PDF
    A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the Euclidean plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same simple curve in the simultaneous drawing. Determining in polynomial time which pairs of graphs share a simultaneous embedding with ?xed edges (SEFE) has been open. We give a necessary and su?cient condition for whether a SEFE exists for pairs of graphs whose union is homeomorphic to K5 or K3,3 . This allows us to characterize the class of planar graphs that always have a SEFE with any other planar graph. We also characterize the class of biconnected outerplanar graphs that always have a SEFE with any other outerplanar graph. In both cases, we provide e?cient algorithms to compute a SEFE. Finally, we provide a linear-time decision algorithm for deciding whether a pair of biconnected outerplanar graphs has a SEFE

    Characterizing Simultaneous Embeddings with Fixed Edges

    Get PDF
    A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same Jordan curve in the simultaneous drawings. While any number of planar graphs have a simultaneous embedding without ?xed edges, determining which graphs always share a simultaneous embedding with ?xed edges (SEFE) has been open. We partially close this problem by giving a necessary condition to determine when pairs of graphs have a SEFE

    Non-Euclidean classification of medically imaged objects via s-reps

    Get PDF
    AbstractClassifying medically imaged objects, e.g., into diseased and normal classes, has been one of the important goals in medical imaging. We propose a novel classification scheme that uses a skeletal representation to provide rich non-Euclidean geometric object properties. Our statistical method combines distance weighted discrimination (DWD) with a carefully chosen Euclideanization which takes full advantage of the geometry of the manifold on which these non-Euclidean geometric object properties (GOPs) live. Our method is evaluated via the task of classifying 3D hippocampi between schizophrenics and healthy controls. We address three central questions. 1) Does adding shape features increase discriminative power over the more standard classification based only on global volume? 2) If so, does our skeletal representation provide greater discriminative power than a conventional boundary point distribution model (PDM)? 3) Especially, is Euclideanization of non-Euclidean shape properties important in achieving high discriminative power? Measuring the capability of a method in terms of area under the receiver operator characteristic (ROC) curve, we show that our proposed method achieves strongly better classification than both the classification method based on global volume alone and the s-rep-based classification method without proper Euclideanization of non-Euclidean GOPs. We show classification using Euclideanized s-reps is also superior to classification using PDMs, whether the PDMs are first Euclideanized or not. We also show improved performance with Euclideanized boundary PDMs over non-linear boundary PDMs. This demonstrates the benefit that proper Euclideanization of non-Euclidean GOPs brings not only to s-rep-based classification but also to PDM-based classification
    corecore