22,597 research outputs found
The effect of cave illumination on bats
Artificial light at night has large impacts on nocturnal wildlife such as bats, yet its effect varies with wavelength of light, context, and across species involved. Here, we studied in two experiments how wild bats of cave-roosting species (Rhinolophus mehelyi, R. euryale, Myotis capaccinii and Miniopterus schreibersii) respond to LED lights of different colours. In dual choice experiments, we measured the acoustic activity of bats in response to neutral-white, red or amber LED at a cave entrance and in a flight room â mimicking a cave interior. In the flight room, M. capaccinii and M. schreibersii preferred red to white light, but showed no preference for red over amber, or amber over white light. In the cave entrance experiment, all light colours reduced the activity of all emerging species, yet red LED had the least negative effect. Rhinolophus species reacted most strongly, matching their refusal to fly at all under any light treatment in the flight room. We conclude that the placement and light colour of LED light should be considered carefully in lighting concepts for caves both in the interior and at the entrance. In a cave interior, red LED light could be chosen â if needed at all â for careful temporary illumination of areas, yet areas important for bats should be avoided based on the precautionary principle. At cave entrances, the high sensitivity of most bat species, particularly of Rhinolophus spp., towards light sources almost irrespective of colour, calls for utmost caution when illuminating cave entrances
Spin injection from perpendicular magnetized ferromagnetic -MnGa into (Al,Ga)As heterostructures
Electrical spin injection from ferromagnetic -MnGa into an (Al,Ga)As
p-i-n light emitting diode (LED) is demonstrated. The -MnGa layers show
strong perpendicular magnetocrystalline anisotropy, enabling detection of spin
injection at remanence without an applied magnetic field. The bias and
temperature dependence of the spin injection are found to be qualitatively
similar to Fe-based spin LED devices. A Hanle effect is observed and
demonstrates complete depolarization of spins in the semiconductor in a
transverse magnetic field.Comment: 4 pages, 3 figure
Instability due to long range Coulomb interaction in a liquid of polarizable particles (polarons, etc.)
The interaction Hamiltonian for a system of polarons a la Feynman in the
presence of long range Coulomb interaction is derived and the dielectric
function is computed in mean field. For large enough concentration a liquid of
such particles becomes unstable. The onset of the instability is signaled by
the softening of a collective optical mode in which all electrons oscillate in
phase in their respective self-trapping potential. We associate the instability
with a metallization of the system. Optical experiments in slightly doped
cuprates and doped nickelates are analyzed within this theory.
We discuss why doped cuprates matallize whereas nickelates do not.Comment: 5 pages,1 figur
State-to-state rotational transitions in H+H collisions at low temperatures
We present quantum mechanical close-coupling calculations of collisions
between two hydrogen molecules over a wide range of energies, extending from
the ultracold limit to the super-thermal region. The two most recently
published potential energy surfaces for the H-H complex, the so-called
DJ (Diep and Johnson, 2000) and BMKP (Boothroyd et al., 2002) surfaces, are
quantitatively evaluated and compared through the investigation of rotational
transitions in H+H collisions within rigid rotor approximation. The
BMKP surface is expected to be an improvement, approaching chemical accuracy,
over all conformations of the potential energy surface compared to previous
calculations of H-H interaction. We found significant differences in
rotational excitation/de-excitation cross sections computed on the two surfaces
in collisions between two para-H molecules. The discrepancy persists over a
large range of energies from the ultracold regime to thermal energies and
occurs for several low-lying initial rotational levels. Good agreement is found
with experiment (Mat\'e et al., 2005) for the lowest rotational excitation
process, but only with the use of the DJ potential. Rate coefficients computed
with the BMKP potential are an order of magnitude smaller.Comment: Accepted by J. Chem. Phy
Monopolelike probes for quantitative magnetic force microscopy: calibration and application
A local magnetization measurement was performed with a Magnetic Force
Microscope (MFM) to determine magnetization in domains of an exchange coupled
[Co/Pt]/Co/Ru multilayer with predominant perpendicular anisotropy. The
quantitative MFM measurements were conducted with an iron filled carbon
nanotube tip, which is shown to behave like a monopole. As a result we
determined an additional in-plane magnetization component of the multilayer,
which is explained by estimating the effective permeability of the sample
within the \mu*-method.Comment: 3 pages, 3 figure
Towards Error Handling in a DSL for Robot Assembly Tasks
This work-in-progress paper presents our work with a domain specific language
(DSL) for tackling the issue of programming robots for small-sized batch
production. We observe that as the complexity of assembly increases so does the
likelihood of errors, and these errors need to be addressed. Nevertheless, it
is essential that programming and setting up the assembly remains fast, allows
quick changeovers, easy adjustments and reconfigurations. In this paper we
present an initial design and implementation of extending an existing DSL for
assembly operations with error specification, error handling and advanced move
commands incorporating error tolerance. The DSL is used as part of a framework
that aims at tackling uncertainties through a probabilistic approach.Comment: Presented at DSLRob 2014 (arXiv:cs/1411.7148
Effects of maternal subnutrition during early pregnancy on cow hematological profiles and offspring physiology and vitality in two beef breeds
This experiment evaluated the effects of subnutrition during early gestation on hematology in cows (Bos Taurus) and on hematological, metabolic, endocrine, and vitality parameters in their calves. Parda de MontaĂąa and Pirenaica dams were inseminated and assigned to either a control (CONTROL, 100% requirements) or a nutrientârestricted group (SUBNUT, 65%) during the first third of gestation. Dam blood samples were collected on days 20 and 253 of gestation, and calf samples were obtained during the first days of life. Pirenaica dams presented higher red series parameters than Parda de MontaĂąa dams, both in the first and the last months of gestation. During early pregnancy, granulocyte numbers and mean corpuscular hemoglobin were lower in PirenaicaâSUBNUT than in PirenaicaâCONTROL cows. Calves from the SUBNUT cows did not show a physiological reduction in red series values in early life, suggesting later maturation of the hematopoietic system. Poor maternal nutrition affected calf endocrine parameters. Newborns from dystocic parturitions showed lower NEFA concentrations and weaker vitality responses. In conclusion, maternal nutrition had shortâterm effects on cow hematology, Pirenaica cows showing a higher susceptibility to undernutrition; and a longâterm effect on their offspring endocrinology, SUBNUT newborns showing lower levels of IGFâ1 and higher levels of cortisol.This work was supported by the Spanish Ministry of Economy and Business and the European Union Regional Development Funds (INIA RTA 2013â00059âC02 and INIA RZP 2015â001) and the Government of Aragon under the Grant Research Group Funds (A14_17R). A. Noya received a PhD grant from INIAâGovernment of Aragon
- âŚ