research

State-to-state rotational transitions in H2_2+H2_2 collisions at low temperatures

Abstract

We present quantum mechanical close-coupling calculations of collisions between two hydrogen molecules over a wide range of energies, extending from the ultracold limit to the super-thermal region. The two most recently published potential energy surfaces for the H2_2-H2_2 complex, the so-called DJ (Diep and Johnson, 2000) and BMKP (Boothroyd et al., 2002) surfaces, are quantitatively evaluated and compared through the investigation of rotational transitions in H2_2+H2_2 collisions within rigid rotor approximation. The BMKP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the potential energy surface compared to previous calculations of H2_2-H2_2 interaction. We found significant differences in rotational excitation/de-excitation cross sections computed on the two surfaces in collisions between two para-H2_2 molecules. The discrepancy persists over a large range of energies from the ultracold regime to thermal energies and occurs for several low-lying initial rotational levels. Good agreement is found with experiment (Mat\'e et al., 2005) for the lowest rotational excitation process, but only with the use of the DJ potential. Rate coefficients computed with the BMKP potential are an order of magnitude smaller.Comment: Accepted by J. Chem. Phy

    Similar works

    Available Versions

    Last time updated on 11/12/2019