16,392 research outputs found

    Floor-fractured crater models of the Sudbury structure, Canada

    Get PDF
    The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury

    Variation in multiring basic structures as a function of impact angle

    Get PDF
    Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault

    Floor-fractured crater models for igneous crater modification on Venus

    Get PDF
    Although crater modification on the Earth, Moon, and Mars results from surface erosion and crater infilling, a significant number of craters on the Moon also exhibit distinctive patterns of crater-centered fracturing and volcanism that can be modeled as the result of igneous crater modification. Here, we consider the possible effects of Venus surface conditions on this model, describe two examples of such crater modification, and then briefly discuss the constraints these craters place on conditions at depth

    Igneous intrusion models for floor fracturing in lunar craters

    Get PDF
    Lunar floor-fractured craters are primarily located near the maria and frequently contain ponded mare units and dark mantling deposits. Fracturing is confined to the crater interior, often producing a moat-like feature near the floor edge, and crater depth is commonly reduced by uplift of the crater floor. Although viscous relaxation of crater topography can produce such uplift, the close association of modification with surface volcanism supports a model linking floor fracture to crater-centered igneous intrusions. The consequences of two intrusion models for the lunar interior are quantitatively explored. The first model is based on terrestrial laccoliths and describes a shallow intrusion beneath the crater. The second model is based on cone sheet complexes where surface deformation results from a deeper magma chamber. Both models, their fit to observed crater modifications and possible implications for local volcanism are described

    Breakdown of self-similarity at the crests of large amplitude standing water waves

    Full text link
    We study the limiting behavior of large-amplitude standing waves on deep water using high-resolution numerical simulations in double and quadruple precision. While periodic traveling waves approach Stokes's sharply crested extreme wave in an asymptotically self-similar manner, we find that standing waves behave differently. Instead of sharpening to a corner or cusp as previously conjectured, the crest tip develops a variety of oscillatory structures. This causes the bifurcation curve that parametrizes these waves to fragment into disjoint branches corresponding to the different oscillation patterns that occur. In many cases, a vertical jet of fluid pushes these structures upward, leading to wave profiles commonly seen in wave tank experiments. Thus, we observe a rich array of dynamic behavior at small length scales in a regime previously thought to be self-similar.Comment: 4 pages, 5 figures. Final version accepted for publicatio

    Atmospheric cloud physics laboratory project study

    Get PDF
    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure

    Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine (Vitis vinifera L.)

    Get PDF
    The relationship of photosynthesis (A) of grapevine (Vitis vinifera L.) sun and shade leaves of primary and secondary (lateral) shoots to insertion level was investigated over two seasons in the field. The leaf plastochron index (LPI) was used to denote leaf position on the shoot. Additionally, laboratory and field measurements of the response of A to CO2 were conducted. An empirical model was developed to estimate carboxylation efficiency (CE) and stomatal limitations (1) of A. In sun leaves, the relationship of A to LPI changed little until the end of the season (October), whereas stomatal conductance (g) and the intercellular partial pressure of CO2 (ci) increased. Leaves acclimated to low light and leaves older than LPI 5 had 30 % lower A and were operating at a slightly higher ci as sun leaves. During September and October, lateral leaves had highest rates of CO2 assimilation and CE. In mid-October, A and g decreased rapidly and simultaneously for all leaf types, leaf positions and both treatments (sun and shade). Photosynthesis responded similar to individual leaf age as to leaf position. A was linearly related to ci up to non-limiting conductances for sun and shade leaves, for all ages and at all times during the season. The CE and 1 were highest at the beginning of the season and strongly dependent on leaf position. Stomatal limitation declined continuously from about 55 % at the beginning to about 23 and 18 % for sun and shade leaves, respectively, at the end of the season

    Studies in matter antimatter separation and in the origin of lunar magnetism

    Get PDF
    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed

    Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Get PDF
    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation

    Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    Get PDF
    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field
    • …
    corecore