1,489 research outputs found

    Sub-Optimal Control of Rigid Spacecraft Reorientation Using Three Momentum Wheels

    Get PDF
    This thesis addresses sub-optimal employment of 3 momentum wheels for large angle reorientation of rigid spacecraft with minimal induced spacecraft motion during maneuvers. In addition to development of general theory for 3 wheel vehicles, simulation results for a vehicle using momentum wheels for secondary attitude control (GPS Block IIR) are compared to results for a vehicle using them for primary attitude control (the Hubble Space Telescope), to demonstrate practical applications and limitations. While the control laws were developed assuming no external perturbing torques on the vehicle, reorientation scenarios were run both in a torque free environment as well as an environment with simulated gravity gradient and solar pressure torques. The goal was primarily to show the growth of vehicle angular velocities and again demonstrate limitations of the derived control laws. The results indicate that for real spacecraft with limited wheel momentum storage capacities, there is a significant trade-off between maneuver times and required wheel torques, and that final state errors (angular velocities) increase with increasing wheel torques. Nonetheless, the simulations demonstrated that large angle maneuvers can be performed for both GPS Block lift and Hubble Space Telescope in reasonable times and with small angular velocities using the sub-optimal control law. However, gravity gradient and solar pressure torques tended to cause larger fluctuations in total angular momentum, angular velocities, and final state errors for the Hubble Space Telescope

    Regulation of Nuclear Envelope Assembly/Disassembly by MAP Kinase

    Get PDF
    AbstractMouse eggs arrested in metaphase II display high levels of cdc2/cyclin B1 and MAP protein kinase activities. Following fertilization there is a time-dependent decrease in the activity of each of these protein kinases. The decline in cdc2/cyclin B1 protein kinase correlates with the resumption of meiosis and the emission of the second polar body and precedes the decline in MAP kinase activity, which correlates temporally with the formation of the male and female pronuclear envelopes. These results suggest that high levels of MAP kinase activity are incompatible with the presence of a pronuclear envelope. To test this possibility, we expressed in mouse eggs a constitutively active form of MAP kinase kinase (MEK) whose only known target is p42/p44 MAP kinase. We show that following fertilization cdc2/cyclin B1 kinase activity declines and a second polar body is emitted. The endogenous MAP kinase remains active, however, and no pronuclear envelopes form. Thus, high levels of MAP kinase activity by itself in mouse eggs appear incompatible with the presence of a pronuclear envelope

    The fundamental problem of command : plan and compliance in a partially centralised economy

    Get PDF
    When a principal gives an order to an agent and advances resources for its implementation, the temptations for the agent to shirk or steal from the principal rather than comply constitute the fundamental problem of command. Historically, partially centralised command economies enforced compliance in various ways, assisted by nesting the fundamental problem of exchange within that of command. The Soviet economy provides some relevant data. The Soviet command system combined several enforcement mechanisms in an equilibrium that shifted as agents learned and each mechanism's comparative costs and benefits changed. When the conditions for an equilibrium disappeared, the system collapsed.Comparative Economic Studies (2005) 47, 296–314. doi:10.1057/palgrave.ces.810011

    AAV5-mediated targeted decorin gene therapy : effective and safe for corneal fibrosis [abstract]

    Get PDF
    Corneal fibrosis is 3rd leading cause of global blindness according to WHO report. At present, no agents are proven to clinically reduce corneal fibrosis without causing significant side effects. It was hypothesized that decorin gene delivered into keratocytes prevents corneal fibrosis in the cornea in vivo by blocking transforming growth factor β (TGFb), which converts keratocyte to myofibroblasts and cause fibrosis

    Tissue-selective controlled decorin gene delivery in the rabbit cornea significantly retards corneal angiogenesis in vivo [abstract]

    Get PDF
    Recent studies have shown that decorin gene therapy inhibits neovascularization in many non-ocular tissues. We tested the efficacy of decorin gene delivery into stroma with AAV5 to impede vascular endothelial growth factor (VEGF)-induced angiogenesis in rabbit cornea in vivo

    Chromatin-mediated cortical granule redistribution is responsible for the formation of the cortical granule-free domain in mouse eggs

    Get PDF
    AbstractA cortical granule-free domain (CGFD) overlies the metaphase chromatin in fully mature mouse eggs. Although a chromatin-induced localized release of cortical granules (CG) during maturation is thought to be a major contributing factor to its formation, there are indications that CG redistribution may also be involved in generating the CGFD. We performed experiments to determine the relative contributions of CG exocytosis and redistribution in generating the CGFD. We found that the CGFD-inducing activity was not specific to female germ cell chromatin and was heat stable but sensitive to DNase and protease treatment. Surprisingly, chelation of egg intracellular Ca2+ levels did not prevent CGFD formation in response to microinjection of exogenous chromatin, suggesting that development of the CGFD was not a result of CG exocytosis. This finding was confirmed by the lack of CG exudate on the plasma membrane surface of the injected eggs and the absence of conversion of ZP2 to ZP2f during formation of the new CGFD. Moreover, clamping intracellular Ca2+ did not prevent the formation of the CGFD during oocyte maturation, but did inhibit the maturation-associated release of CGs between metaphase I and II. Results of these experiments suggest that CG redistribution is the dominant factor in formation of the CGFD

    Essential Role for endogenous siRNAs during meiosis in mouse oocytes.

    Get PDF
    The RNase III enzyme DICER generates both microRNAs (miRNAs) and endogenous short interfering RNAs (endo-siRNAs). Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO) family of proteins. In mammals, there are four AGO proteins (AGO1-4), of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH) exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT), the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.This research was supported by the National Institutes of Health Grants HD022681 (to RMS), and R37 GM062534-14 (to GJH), National Human Genome Research Institute 5T32HG000046-13 (to FL) and by a kind gift from Kathryn W. Davis. GJH is an investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pgen.100501
    • …
    corecore