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General note 1:

Vectors and dyadics, which are independent of reference frame, are denoted by a bold char-
acter and an arrow (e.g. h and f) Unit vectors are similarly denoted by bold characters
and hats (e.g. 151) Matrices representing vectors and dyadics in a particular reference
frame are denoted by the same bold character without the arrow or hat. The particular
associated reference frame will be stated in the accompanying text or implied.

General note 2:

A tilde superscript on a vector or a matrix representing a vector (eg. 1\7[) indicates that
it is the dimensional form. Accordingly, vectors and matrices representing vectors without
tilde superscripts can be assumed to be non-dimensionalized unless specifically indicated.
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Abstract

Attitude maneuvering of three axis stabilized spacecraft is typically accomplished
using a combination of expendable propellant thrusters, magnetic coils, momentum storage
mechanisms such as momentum wheels, reaction wheels, or control moment gyros, or

passive methods such as gravity gradient stabilization.

With a few exceptions (most notably the Hubble Space Telescope), most three axis
stabilized spacecraft in service today still rely heavily upon expendable propellant thrusters
for primary attitude control, using momentum storage devices only to offset small pertur-

bative torques.

While thrusters allow rapid changes in attitude, their reliance on limited propellant
supplies can result in shortened useful lifetimes for spacecraft employing them exclusively.
Passive attitude control methods such as gravity gradient stabilization or utilization of
solar pressure on solar arrays tend to be slow and are dependent upon interaction with
uncontrollable forces. Maneuvering using magnetic coils is likewise somewhat slow and

becomes less effective with altitude.

Momentum transfer devices, on the other hand, rely upon a reusable energy source -
electrical power - provided by solar arrays and rechargeable batteries, and can be used to
effect large angle reorientations relatively quickly. However, due to the inherent gyroscopic
coupling for a rigid body with embedded momentum wheels and limited control authority
in terms of allowable torques on the wheels and maximum allowable wheel speeds, im-
plementation of “optimal” control laws for these devices can be somewhat complicated.
Calculation of wheel torques for large angle maneuvers based on eigen-axis rotations or
other currently used control laws are beyond the on-board processing capability of most
current satellites. This results in the vehicles being dependent on the ground segment

computers and ground commanding for such maneuvers.

This thesis addresses sub-optimal employment of 3 momentum wheels for large angle

reorientation of rigid spacecraft with minimal induced spacecraft motion during maneuvers.

xiii




In addition to development of general theory for 3 wheel vehicles, simulation results for
a vehicle using momentum wheels for secondary attitude control (GPS Block IIR) are
compared to results for a vehicle using them for primary attitude control (the Hubble

Space Telescope), to demonstrate practical applications and limitations.

While the control laws were developed assuming no external perturbing torques on
the vehicle, reorientation scenarios were run both in a torque free environment as well
as an environment with simulated gravity gradient and solar pressure torques. The goal
was primarily to show the growth of vehicle angular velocities and again demonstrate

limitations of the derived control laws.

The results indicate that for real spacecraft with limited wheel momentum storage
capacities, there is a significant trade-off between maneuver times and required wheel
torques, and that final state errors (angular velocities) increase with increasing wheel
torques. Nomnetheless, the simulations demonstrated that large angle maneuvers can be
performed for both GPS Block IIR and Hubble Space Telescope in reasonable times and
with small angular velocities using the sub-optimal control law. However, gravity gradient
and solar pressure torques tended to cause larger fluctuations in total angular momentum,

angular velocities, and final state errors for the Hubble Space Telescope.

Hopefully the results of this report can be used as a basis for future analysis of this or
similar sub-optimal control approaches. Recommendations for follow-on research include
comparison of this approach to optimal control formulations, as well as consideration of
vehicle kinematics in the control law formulation to reduce final attitude errors. This can,
in turn, be used in the development of closed loop controllers that will minimize deviations

from the sub-optimal control trajectories in the presence of external perturbations.




SUB-OPTIMAL CONTROL
OF
RIGID SPACECRAFT REORIENTATION
USING
THREE MOMENTUM WHEELS

1. Introduction
1.1 Background

Spacecraft attitude dynamics, stability, and control has obviously been an area of
avid research since the launch of the first artificial satellites in the late 1950’s. Although
early satellites had no need for accurate attitude control, the rapid advancement in space-
based communications and remote sensing applications has resulted in the need for robust

and efficient attitude control systems in modern spacecraft.

Most communications and remote sensing spacecraft in operation and in development
today employ three-axis stabilization due to mission mandated pointing accuracy require-
ments and the associated need to minimize vibrations in large flexible appendages. With
a few notable exceptions (e.g. Hubble Space Telescope), three-axis stabilization schemes
typically utilize momentum storage devices such as reaction wheels, momentum wheels,
or control moment gyros only to offset the long term effects of small external perturbing
forces, and accomplish large angle reorientations using expendable propellant thrusters.
While certainly efficient in terms of controllability and time required to complete maneu-
vers, the use of thrusters limits the effective life of satellites, results in high maneuver costs,
can induce undesirable motion in spacecraft appendages, and can in some cases adversely
affect the operation of sensitive on-board systems (like optical telescopes in the case of
Hubble). It is thus in general cost effective and in some cases mission critical to use mo-
mentum storage devices not only for fine attitude control but also for primary attitude

maneuvering whenever practical.
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Many of the analytic solutions to spacecraft attitude control problems to date have
focused on the relatively simple case of the gyrostat, which is typically used to refer to
“dual-spin” spacecraft composed of an inertially fixed segment (platform) and a spin-
ning segment (rotor) which provides gyroscopic stiffness. Several textbooks (most notably
Hughes [11]) journal papers (including Hall [8],[9], Hall and Rand [10]), and AFIT theses
(Kinney [14], Kowall [15], and Tsui [22]) have addressed exact or approximate analytic
solutions and related stability for both single and two rotor gyrostats. Many researchers
have also addressed developing control laws for multiple momentum wheels from an op-
timal control perspective (a significant contribution is provided by Junkins and Turner
[12]). Unfortunately, the resulting calculations can be computationally intense, and thus
relegated to ground segment computers for practical application. This increases satellite
dependence on the ground segment, limits their autonomy (and thus survivability and

flexibility), and increases operations costs for these vehicles.

However, Hall [8] did provide the framework for development of a class of sub-optimal
maneuvers based on his analysis of single and two rotor gyrostats. This stationary platform
maneuver is a rest-to-rest maneuver (inertially fixed at beginning and end) during which
angular velocities of the platform are kept small throughout the maneuver. This has
the advantage of limiting induced vibrations in flexible appendages, and is also easily
calculable. Thus, such a control law could easily be incorporated into the attitude control
logic of future spacecraft and calculated on-board, thereby increasing autonomy of these
vehicles as well as the mission life by using momentum wheels for large angle maneuvers

instead of thrusters.
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1.2 Goals of This Thesis

The primary objectives of this report are three-fold: To extend Hall’s research by
developing a “simple” sub-optimal control law for spacecraft using three momentum wheels,
to assess the utility and limitations of this control law for “real” spacecraft in a torque free
environment, and finally to qualitatively address the additional limitations of the control
law imposed by the addition of external perturbing torques such as gravity gradient and

solar pressure.

This work will thus hopefully serve as a foundation for future research using this
or similar control approaches by identifying the strengths and weaknesses as currently

implemented and providing specific recommendations for improvement.

1.3 Methodology

A computer simulation program was developed by the author for use in this research
effort. The code is included in Appendix D. This program calculates the physical proper-
ties for the GPS Block IIR and Hubble Space Telescope vehicles, sets initial orbital and
simulation parameters, numerically integrates the equations of motion for the vehicle (per-
turbed or unperturbed), and provides both textual and graphical output of the results.

Data from the simulation runs are the main subject of analysis in this report.

Chapter 2 of this report focuses on the derivation of the equations of motion of an
Earth orbiting rigid spacecraft with fixed momentum wheels, in the presence of gravity
gradient and solar pressure torques. It is these equations which are integrated by the
aforementioned simulation program. While mainly a compilation of results from previous
research, the chapter provides a coherent and logical summary of the pertinent equations,

thereby reducing the need for the reader to refer to outside sources.

In Chapter 3, Hall’s development of sub-optimal control laws for a spacecraft using
two momentum wheels is extended to a spacecraft using 3 (or more) wheels, resulting in
a wheel torque control law that results in “smooth” large angle reorientations from one

inertially fixed state to another with only small induced body angular velocities.
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Chapter 4 compares this sub-optimal control law to constant wheel torque maneuvers
for actual vehicles (GPS Block IIR and Hubble Space Telescope). Limitations of the sub-
optimal control are explored with several computer simulations varying the magnitudes of

the control torques used.

Chapter 5 then introduces gravity gradient and solar pressure torques, and the result-
ing deviations from the torque free case are discussed by comparing computer simulations

for both unperturbed and perturbed models.

The overall results are presented and discussed in Chapter 6, along with recommen-

dations for further research.
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II. FEquations of Motion

In this chapter we derive the rotational and attitude equations of motion for a rigid
spacecraft R with n embedded axisymmetric momentum wheels W, operating in an en-
vironment with external perturbing torques (solar pressure and gravity gradient). Both
dimensional and non-dimensional forms of the equations are developed. The notation used

is primarily that of Hughes [11] and Hall [8].

2.1 Rotational Fquations of Motion

Figure 2.1 depicts a spacecraft composed of a platform R and momentum wheels

Wi... W,.

X

P

o>

i

Figure 2.1 Rigid Spacecraft with Multiple Momentum Wheels

The platform is rigid, has constant mass, is not necessarily symmetric, and the
body fixed reference frame F, with basis (f)l b, 133) is centroidal but not necessarily
principal. The body fixed frame translates and rotates relative to the inertially fixed
reference frame F; with basis (&; &, €3). The spin axes of the momentum wheels are

assumed to be fixed within the spacecraft. The wheels are assumed to be perfectly balanced
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and axisymmetric, spinning about their individual axes of symmetry &;...4,. Before

proceeding with derivation of the equations of motion, a few definitions are necessary.

We define the matrix A such that the columns are the column matricesa; (j =1...n)

specifying the orientation of the wheels W, ... W, within the vehicle in F;.

A=|a a, - a, (2.1)

The moments of inertia matrix for the entire spacecraft (including wheels) is assumed

constant as a result of the constant mass and rigidity assumptions.

f11 i12 jls
I= f21 izz fzs (2-2)
f31 I~32 i33

Finally, I, is a diagonal matrix composed of the axial moments of inertia of the wheels

W.. W, .

I, o 0
0 I, O 0

I, = 0 (2.3)
0 0 0 .- I,

We will now derive the equations of motion for a rigid spacecraft with embedded

momentum wheels for the general case in an environment with external perturbing torques.

Following Hughes [11:159], the total angular momentum of a rigid platform with

embedded momentum wheels can be expressed in the form

h =1I& + Ah, (2.4)
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where the axial angular momenta of the wheels about their spin axes in F; are

h, = 1@, (2.5)
The absolute time derivative of angular momentum (in F;) can be written as the relative

time derivative of angular momentum (in F3) plus the cross product of the angular rates

of F, relative to F; and the angular momentum

where

w = w3 0 —(.:)1 (2'6)

— s W 0
In an environment free of external torques, the absolute time derivative of angular mo-
mentum (in F;) is zero ([ﬁ] = 0), so that this equation may be rearranged and written

as

[ﬁ] = —&*h = h*® (2.7)

On the other hand, if external perturbing torques are present, the absolute time derivative
of angular momentum (in F;) is equal to the sum of the external torques ([ﬁ] = M), so

that the equivalent and more general equation, after some rearranging, is
[B] = M - &*h = M+ b*a (2.8)
Fy

Hughes [11] also shows that the total angular momenta of the wheels is given by

h, = I,A7& + h, (2.9)

so that the time derivative of the total angular momenta of the wheels can be expressed

as

h, = 22 = g, (2.10)
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where g, are the torques applied by the platform to the wheels about their spin axes.

Now, dropping the reference frame notation (thereby assuming all future equations
are expressed in F;), the rotational equations of motion for a spacecraft composed of a rigid

platform R and n embedded rigid momentum wheels W; (j = 1...n) can be summarized

as
3 dfl ~ ~
h = == =h*e+M (2.11)
dt
: dh
h, = —= =g, 2.12
7 =8 (2.12)
where
h = I&+ Ah, =total angular momentum of R + W; (2.13)
h, = I,AT& + h, = total angular momenta of W (2.14)
h, = I,&, = axial angular momenta of W; about &; (2.15)
M = external torques acting on the vehicle (2.16)
g, = axial torques applied by R to W; about a;
t = time (2.17)
j = 1l...n
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2.2 Non-dimensionalization

In order to more easily derive the stationary platform condition and visualize torque

trajectories that satisfy this condition, it will be useful to non-dimensionalize the rotational

and wheel torque differential equations (2.11) and (2.12). This has the added advantage

of generalizing the solution to a variety of applications. The following sequence of steps

is basically an expansion of the non-dimensionalization developed by Hall [8], with the

addition of external torques.

Solving Eq. (2.14) for h, and substituting into Eq. (2.13) yields

h, = h, -

-t

ATD

Now define
so that Eq. (2.19) becomes
Solving for & results in

Substituting @ into Eq. (2.11) yields
h=h*[5 (h- Ah,)| + M

Now, we introduce the following transformations to non-dimensionalize:

h

X = =
ho

_ bk
pn P
M = Mk
h2
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
(2.24)

(2.25)




t
]

e = i (2.26)
th,
7 (2:27)

where I, = trace (i) is a characteristic inertia and A, is the magnitude of the total angular
momentum. Note that for the external torque-free case, h = constant, so the magnitude at
any time can be used. However, in the case with external torques present, the magnitude
of total angular momentum can vary. Thus, it is best to select a known value such as the

initial total angular momentum, h,, which is valid in both cases.

Since all moments of inertia (including J ) are non-dimensionalized by dividing by I,

we can replace J with JI, in Eq. (2.21) to obtain
h=JI.&+ Ah, (2.28)

Dividing both sides of this equation by h, and noting the relationships given in Eq. (2.23)
and Eq. (2.24), this becomes

J
x= = ‘o + Ap (2.29)

Solving this equation for & yields
w=—=J1(x—-Ap) (2.30)

This is essentially another derived non-dimensionalization transformation relating & and

w where

w=J"1(x—-Ap) (2.31)

We can thus substitute Eq. (2.30) into Eq. (2.11) to obtain

d—f} = h* [(éﬂ) J'(x—Ap)

<

+M (2.32)
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From the non-dimensionalization transformation for ¢ in Eq. (2.27) we obtain

dt = dt ({—) (2.33)

(4

Substituting this into Eq. (2.32) yields

dh (h,\ o [(Ro) <1
& (3) -5 (7)o

Multiplying through by (I, h2), and regrouping slightly results in
0 g

+M (2.34)

a1 _ (_) J N (x—Ap)+ 1\:21 (2.35)

Recognizing from Egs. (2.23) and (2.25) that h/h, = x, dh/h, = dx, and MI,/h? = M,

this equation reduces to

B 37 (- AR+ M (2:36)

which results in the dimensionless rotational equations of motion
x=x*[J'(x- Ap)| + M (2.37)
or, noting from Eq. (2.31) that w = J~'(x — Ap):
X = x*w+ M (2.38)

Similarly, by making the substitution from Eq. (2.33) for dt in the dimensional wheel torque

relationship, Eq. (2.12) becomes i
dh, (he) _g (2.39)
at \1,)”° '
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Dividing both sides by A, and recognizing from Eq. (2.24) that dh,/h, = dp results in
()
dt \I.)

Q= (%) 8o (2.41)

Comparing this to the non-dimensionalization transformation relationship for € given by

o

|

£ (2.40)

o

o

which can be rewritten as

Eq. (2.26), we obtain the non-dimensional wheel torque equation

jL=¢ (2.42)
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2.8 Perturbative Force Modeling

In the previous sections, we derived the rotational and attitude equations of motion
for a spacecraft, without specifying the external moments (M). In real applications, this
quantity is a composite of dozens of external moments acting on the vehicle. It is our
desire to model the most significant of these. In Chapter IV, we will see the effects these

moments have on the attitude dynamics of the vehicle during maneuvers.

The external moments acting on a spacecraft in orbit about the Earth vary in mag-
nitude (depending on altitude and spacecraft configuration) from large effects such as
aerodynamic drag in low earth orbit, to smaller effects such as gravitational interactions

between the vehicle and the Sun, Moon, and other planets.

Gravity gradient and solar pressure effects are perhaps the most significant from
an attitude control perspective. Deviations from a pure two-body problem (e.g. Earth
oblateness and third body effects from the Sun, Moon, and other planets) primarily affect
the satellite’s orbit. These effects are certainly important for accurate orbit estimation.
However, even though the inclusion of gravity gradient and solar pressure torques couples
the orbital and rotational equations of motion, the assumption of an inertially fixed orbit

with perfectly known orbital elements is sufficient for preliminary analysis.

Accordingly, we make the assumptions in the following derivations that the space-
craft’s translational motion is that of a point mass in orbit about a perfectly spherical Earth
of uniform mass distribution, with no interaction with the atmosphere or other celestial
bodies. Orbital parameters for the GPS Block IIR and Hubble Space Telescope are listed in
Appendices B and C. Both vehicles have nearly circular orbits with altitudes of 20,182 km
and 615 km, respectively, and inclinations of 54° and 45°. For ease of simulation, the right
ascension of the node () was assumed to be zero and the argument of perigee (w) was
assumed to be m/2 for both vehicles. While w is not defined for exactly circular orbits,
the simulation was left as general as possible to allow application to elliptical orbits. Such
assumptions allowed easy calculation of initial velocity components in the inertial frame.

0 and w were also assumed constant, which is reasonable if the vehicles are kept on station

2-9




(either automatically or via ground commands) or if simulation times are limited to only

a few orbital periods.

The two-body equations of motion are well known and can be expressed in many
forms. However, in our inertially fixed Earth-centered frame F;, they can be expressed as

a set of six first order differential equations (in matrix form) as

R =V (2.43)
v = -ter (2.44)
R
where
g = Earth gravitational parameter
R = components of position vector from Earth center to spacecraft center of mass
V = components of velocity vector of spacecraft center of mass
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2.3.1 Gravity Gradient Torques.  Gravity gradient torques arise due to asymme-
tries in the vehicle’s mass distribution and the resulting inequity of gravitational attraction
between the central attractive body (e.g. Earth) and spacecraft mass elements for certain
vehicle orientations. If the vehicle were perfectly spherical and of uniform mass distri-
bution, the sum of gravitational forces on the differential elements of mass comprising
the vehicle would offset each other resulting in no net torque on the vehicle regardless of
orientation. However, as is the case with most modern spacecraft (including GPS Block
IIR and the Hubble Space Telescope), mission requirements result in asymmetry in mass

distribution.

Following Kaplan [13:200] and Hughes [11:235], the net gravity gradient torque (1\:/19)

acting on a body B can be expressed as

= . —Heg (
M, = f #x ; (2.45)
B

where R vector from attracting body center of mass to B center of mass

I

vector from B center of mass to differential mass element dm

"y
I

It is the dependency of 1\:/,19 on ﬁ, which couples the orbital equations of motion
(Eq. (2.44)) and the rotational equations of motion (Eq. (2.11)) since the gravity gradient
torque is one component of the overall external moment M. Thus, as the orbital equations
are integrated, the resulting position data are used to calculate gravitational torques which

are in turn used in the integration of the rotational equations of motion.

Summaries of the mass properties of the GPS Block IIR and Hubble Space Telescope
vehicles are included in Appendices B and C. While detailed mass data for every vehicle
subsystem and location were available for GPS Block IIR [17], only total mass was available

for the Hubble Space Telescope [2:1].
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The most accurate yet easily calculable approach to determining the resultant torques

. 3 -
is to use a series expansion for |R + T R| <« 1. After dropping

, Tecognizing that ’f‘l /
squared and higher terms, and some manipulation (see Hughes [11:235-237]), the expression

for total gravity gradient torque (in matrix form in F;) becomes

M, = He oxic, (2.46)

where ¢3 = [¢13 €23 c33]T and ¢;3, (i = 1...3) are the direction cosines found by calculating
Analysis of the above expression reveals that for an asymmetric vehicle (principle

moments of inertia unequal), the net gravity gradient torque on the vehicle is zero when

any of the principal axes are aligned with the local vertical (ﬁ/

ﬁ’) Stability analysis of
these equilibria shows that the only stable orientation for a vehicle in a circular orbit is

such that the minor axis is aligned with the local vertical [11],[5],[13].

Figure 2.2 shows the relationship between the body frame and inertial frame for the
GPS Block IIR spacecraft in orbit. The relationship for Hubble Space Telescope is similar

(see Appendix C for body frame orientation).

2-12




’
oy
>

Earth

Figure 2.2 GPS Block 1IR Gravity Gradient Model

2.3.2 Solar Pressure Torques.  Small torques on a spacecraft can also occur as a
result of uneven absorption and reflection of electro-magnetic radiation (photons) by the
spacecraft surfaces. The primary source of high energy radiation for an Earth-orbiting
satellite is obviously the Sun, and the effects are clearly greater for large asymmetric
vehicles than for smaller, more symmetric ones. Since both the GPS Block IIR and Hubble
Space Telescope vehicles have large appendages (solar arrays) and the main bodies are

asymmetric, the effects of solar pressure induced torques on a maneuvering vehicle are of

interest.

As is more fully derived in Agrawal [1:133-135], the net solar pressure induced torque
on a surface S with uniform material properties, discounting shadowing effects, is given
by:

M, = /S - (ns) I X [(pa +pa) S+ (2/), + 2—;@) ﬁ] P,yndA (2.47)

or, since p, + pg + ps = 1:

Ms = / - (fl'é) %X [(1 - ps)é + 2 (pa + E:;—) ﬁ] P.sundA (248)
S
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where:

S = unit vector from Sun to differential area dA
n = externally oriented unit normal vector of dA
F = vector from vehicle center of mass to the center of pressure of dA
P,,. = solar radiation pressure
p. = fraction of radiation absorbed by dA
ps = fraction of radiation diffusely reflected by dA
p, = fraction of radiation specularly reflected by dA

It is important to restate that these equations do not take into account shadowing
effects of one surface on another (e.g. solar array shadowing main body or “back” face of
spacecraft entirely in shadow). For a three-dimensional surface such as the main body of
the GPS Block IIR and the Hubble Space Telescope, if no provision is made to exclude the
side not facing the Sun from the equations, the resulting torques calculated will in effect
assume that the photons have traveled through the front face and are impinging on the

rear faces as well.

Unfortunately, the main body surfaces cannot reasonably be ignored for either GPS
Block ITR or the Hubble Space Telescope, since the moment arms (from vehicle mass center
to surface center of pressure) of the solar pressure torques about the b, and b, axes are
much greater than those of the solar arrays, and the assumption of symmetry of the two
solar arrays with respect to the b, — by plane negates any torques about the b3 axis from

the arrays.

For a spacecraft with discrete components, the solar pressure torque calculation is
reduced to a sum of the contribution from each of the component surfaces, recognizing
that any main body surfaces in shadow (ﬁi-s > 0) contribute nothing. In matrix form,

the equation is

n

M, =) [— (n]S) £ [(1 —ps)S+2 (p, + %) n,] PsunAi] (2.49)

i=1
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where:

S = components of unit vector from Sun to vehicle
n; = components of externally oriented unit normal vector of A;
F; = components of vector from vehicle center of mass to the center of pressure of A,

Note in Figure 2.3 that the GPS Block IIR vehicle is modeled as eight planar rect-
angular surfaces, only six of which can ever be in shadow (the main body “sides”, “top”,
and “bottom”). For the Hubble Space Telescope (Figure 2.4), however, the two main body
cylinders are modeled such that half the cylinders are always in sun unless the b, axis is
parallel to S. Due to our choice of body frame, the effective areas of these half cylinders are
rectangles with widths equal to the cylinder diameters and heights equal to the cylinder
heights, scaled to account for Sun vector angle by the n!'S term. The center of pressure
thus “moves” on the surface such that it is always in the center of the effective area, and
the normal vector is defined as the surface normal at the center of pressure (with only b,

and b, components).

Differences in the absorptivity and reflectivity of various parts of the spacecraft will
also result in solar pressure differentials. For example, it would be expected that solar
arrays have a higher absorptivity than the main body, which is typically covered in layers
of reflective material. However, for simplicity of modeling, the material properties of both
the GPS Block IIR and Hubble Space Telescope were assumed constant across all surfaces,
with spectral reflectivity higher than diffuse reflectivity and absorptivity (see Appendices

B and C for assumed values).

Due to the large distances from the Sun to the vehicle for an Earth-orbiting satellite
and the relatively small size of the vehicle, it is reasonable to assume that the Sun vector
direction is constant across all exposed surfaces for any point in time. However, since
the Earth is moving relative to the Sun, the Sun vector does move with respect to our
Earth-centered inertial reference frame ;. Since the Earth’s orbit is nearly circular and
by definition of the ecliptic plane has inclination of zero [3], it is reasonable to assume that

the Sun vector “rotates” at a constant angular rate in the & — &, plane of our inertial
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reference frame. If the angle of the Sun vector from the &, axis is given by 6,, then the

Sun vector in F; can be represented in matrix form as
. T
S = [cosf, sinf, 0]

and the angle 6, is governed by

27

365.25 dags ~ 199 X 107" rad/s = constant

08 = Wsun =

2-16
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Figure 2.3 GPS Block IIR Idealization for Solar Pressure Modeling
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Figure 2.4 Hubble Space Telescope Idealization for Solar Pressure Modeling
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2.4 Attitude Fquations

There are numerous choices of parameters available to express the attitude of the
vehicle body-fixed frame F, with respect to the inertial frame ;. Each has its own

advantages and disadvantages depending on the application.

Euler angles, usually represented as three single axis rotations about the body axes,
are perhaps the most commonly used parameters in spacecraft design, mission analysis,
and spacecraft operations. This is due to ease of visualization and intuitive relationship
between the body frame (containing spacecraft sensors and communications hardware) and
the inertial frame (from which the sensors obtain data). However, the well documented
singularities in the differential equations relating vehicle angular velocities to Euler angles
leads to computational difficulties for passage through certain orientations (depending on

the Euler angle set used).

Attitude equations utilizing quaternions, with a redundant fourth parameter, avoid
these computational singularities. However, the cost of numerical stability is a loss of

simple physical meaning of the four parameters to planners and analysts.

In all of the spacecraft command and control and simulation systems this author has
dealt with, quaternions are used for attitude propagation within the modeling software,

and Euler angles are calculated from the quaternions for display to the end user.

The quaternions are dimensionless parameters by definition. Following Chobotov
[5:10], if the four quaternion parameters are represented by the column matrix q =

(1 ¢2 43 q4)T, the attitude equations can be written as

0 W3 —Wy W

. ]_ _(:)3 0 (:J]_ (:)2
Q= q (2.52)

Wy —0n 0 s

-0, —wy —w3z 0
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It is really unnecessary to distinguish between the dimensional and non-dimensional
forms of this equation, since if we substitute in for dt from Eq. (2.33) and note the rela-

tionship between & and w from Eq. (2.31), Eq. (2.52) becomes

0 w3 —Wwy Wi
il —Ws 0 W, Wy
= q
IC Wy —Wwn 0 W3

—W; —Wy —Ws3 0

(2.53)

Clearly, elimination of common terms from both sides thus yields the non-dimensional
form of the equation, which is the same form except that non-dimensional angular rates
are used. Using the superscript notation 2% to represent the 4 X 4 skew symmetric matrix
of angular velocities (not to be confused with the 3 X 3 matrix w*), the attitude equations

can be expressed in the compact matrix form

= -;—qu (2.54)

The quaternions obviously vary with time if the spacecraft is rotating with respect
to the inertial frame. Certainly, the orientation of one orthogonal reference frame #; to
another F; can be described by a 3 x 3 rotation matrix T that also varies with time, and
whose columns are the orthonormal basis vectors of F, expressed in terms of the basis
vectors of F;. Again following Chobotov [5:9], the elements of this rotation matrix can be

expressed in terms of the quaternions as

Ty = ¢-G-6G+4
T = 2(q192 + 9394)

Tz = 2 (‘I1Q3 - ‘I2Q4)

Ty 2(q192 — 9394)

T2 - +a-at+a
Tos 2(q194 + 925)
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Ts1 = 2(q1g3 + 9294)
Tz, = 2(—q1¢a + ¢293)

Ty = ~G-G+B+4

Furthermore, since the rotation matrix can also be constructed as the product of
three single-axis rotation matrices involving Euler angles (choice of sequence dependent on
application), it should be clear that the Euler angles can be extracted from the T found

using quaternions. Angular rates in terms of the Euler angles can likewise be derived. The

reader is referred to Chobotov [5:6-7].
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2.5 Fquations Summary

Before continuing, it will be useful to have all of the equations of motion summa-
rized in one location for future reference (renumbered as well). Note that only the non-
dimensional forms of the rotational and wheel torque equations are given, since they are
used exclusively in the following sections. For subsequent developments which assume no
external torques (as in Chapter III), the rotational equations of motion do not contain M,
and thus the gravity gradient and solar pressure torque equations used to calculate the
components of M (i.e. M, and M,) are not necessary. The following equations are for
the general case with ezternal torques included (which will be used in Chapter 5), and are
provided in matrix form. All equations assume the matrices are expressed in 7, except
the orbital position, orbital velocity, and Sun vector equations. For definitions of variables

and constants the reader is referred to the previous sections and to the List of Symbols.

x = Xw+M (2.55)
po= € (2.56)

q = %qu (2.57)
[ﬁ]f,. - Mﬁ (2.58)
Mr,. - "u;a [R]f,_ (2.59)
b, = o (2.60)
= (iIL_;) (1\719-{-1\7[3) (2.61)

M, = el (2.62)

2|

M, = Z:[— (nf'S) F¥ [(1—Ps)s+2(ps+%> ni] P,unAi] (2.63)
Sy, = [cosf, sind, O]T (2.64)
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III. Wheel Torque Control Law Derivation

The purpose of this chapter is to state the conditions on spacecraft momentum
and wheel momenta necessary for a stationary platform (body angular rates very small),
calculate some wheel torque controls to accomplish rest-to-rest and stationary platform
maneuvers and discuss limitations on such maneuvers due to physical limitations of the

wheels.

Examples of these maneuvers for specific spacecraft will be performed in Chapter
4 (without external perturbing torques) and Chapter 5 (with gravity gradient and solar

pressure torques).

3.1 Stationary Platform Condition

Most spacecraft in operation today are used for communications or observation and
thus have mission constraints that require them to remain Earth pointed (e.g. GPS) or
essentially fixed in inertial space (e.g. Hubble Space Telescope) for long periods of time.
This necessitates the ability to maintain the spacecraft attitude and counteract external
perturbations such as gravity gradient and solar pressure torques. Also, especially in the
case of the Hubble Space Telescope, it is often critical to be able to maneuver the vehicle
from one stationary orientation to another with minimal induced motion on the vehicle

(which might damage components such as solar arrays, antennas, or sensors).

It is immediately apparent from inspection of Eq. (2.31) that the vehicle will be

stationary if

w=J1x-Ap)=0 (3.1)

which leads to the stationary platform condition
x=Ap (3.2)
For vehicles with 3 non-coplanar wheels, this can also be expressed as

p=A"x (3.3)




The physical interpretation of Eq. (3.2) is quite simple; for the platform to be sta-
tionary, the direction and magnitude of the spacecraft total momentum vector (x) must
be equal to the direction and magnitude of the total wheel momentum vector (Ap) in the

body frame for all time.

An interesting way of describing and visualizing this stationary platform condition
was developed by Hall [8] by noting that since x is normalized, conservation of angular

momentum requires x'x = 1, so that substituting from above ultimately yields
pTATAp =1 (3.4)

which for a vehicle employing n momentum wheels, is readily recognized as a hyper-ellipsoid
of dimension n in the space spanned by (u; 0---0), (0 gz 0---0), (0---0 p,), hereafter
referred to as p space (or F,). Thus, for a given value of total angular momentum (h,),
the platform R will remain fixed with respect to inertial space (F;) as long as the wheel

momenta g = ({41 ftz - - - 4 ) lie on the surface of this wheel momenta ellipsoid and x = Ap.

Also, as is common in dynamics texts and attitude dynamics papers, the spacecraft
total angular momentum itself can be represented by a sphere, in our case in x space (see
Fig. 3.1). Typically, this momentum sphere is used to visualize the stability of spacecraft
motion about the angular momentum vector. However, in our applications, we will use this
momentum sphere only to describe the spacecraft total momentum during reorientation
maneuvers. It will prove particularly useful in showing how violations of assumptions on

control torque magnitudes results in state errors.

While only three wheels are necessary for three degree of freedom attitude control,
most vehicles employing them have a set of four, aligned in a “pyramid” fashion so that no
combination of three of the wheels are co-planar (see Appendix C for GPS Blk IIR wheel
orientations). Having a fourth wheel not only provides redundancy in the event of failure
or degradation of performance of a single wheel, but also allows more total momentum
storage by the wheels. Thus, while in some spacecraft only three of the four wheels are used
simultaneously (e.g. Hubble Space Telescope), in others, the fourth wheel is routinely used

to increase control authority (e.g. GPS Block IIR) [20],[2],[7]. For ease of visualization,




x3

Figure 3.1 Spacecraft Total Momentum Sphere

we will focus primarily on reorientation maneuvers using sets of three wheels. This allows
representation of the stationary platform condition by a three-dimensional wheel momenta
ellipsoid. However, in later sections we will briefly discuss use of the fourth wheel in cases
where the primary three wheels cannot generate enough angular momentum to maintain

a stationary platform.

Figures 3.2 through 3.9 are examples of wheel momenta ellipsoids for vehicles using
three momentum wheels for attitude control, for varying orientations of the wheels within
the body frame. Notice that for the case of orthogonal wheels (Figs. 3.2 and 3.3), the
ellipsoid reduces to a sphere, and that as the wheels approach co-planarity (Figs. 3.6
and 3.7), the ellipsoid elongates. If the three wheels are co-planar (but none co-linear),
the principal axis of the ellipse perpendicular to the plane becomes infinitely large. This
reflects the fact that the wheels can no longer “absorb” the spacecraft’s angular momentum
(thus achieving stationary platform condition), no matter how small, if the direction of the
angular momentum is not within the plane formed by the three wheels. As the three wheels
become co-linear (see Fig. 3.9), two of the three principal axes become infinitely large,
suggesting that the wheels can maintain a stationary platform only if the total angular

momentum vector is aligned with the wheel spin axes.
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It is important to note that the discussion in this chapter will be limited by the
assumption that the spacecraft total angular momentum is constant (7&0 = const), so that
the momentum sphere and wheel momenta ellipsoid are of constant “size”. In other words,
since these two graphical tools are constructed in non-dimensional variables (x and u), if
the magnitude of the total angular momentum changes with time, the wheel momenta
ellipsoid will “expand” or “contract” relative to the nominal ellipsoid calculated based
on h,. This will be discussed in more depth in Chapter 5 when perturbing torques are

introduced into the simulations.
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Another important relationship to understand is that between the direction of the
total angular momentum vector (x), the direction of the wheel momenta vector (Apu),
and the attitude of the spacecraft with respect to F;. Let us assume that the wheels can
absorb all the angular momentum of the spacecraft, so that the the stationary platform
condition x = A (which is expressed in F3) holds. Also assume that we know (i.e. can
accurately estimate) the direction of the spacecraft angular momentum vector in inertial
space (x;), the wheel angular rates (w,), inertias (I,), and the orientation of the wheels
with respect to the body frame (A). Finally, let the attitude of the spacecraft body frame
F, with respect to inertial F; be given by the rotation matrix T. We can thus calculate

the spacecraft total momentum in the body frame as
x = Tx; (3.5)
Substituting A in for x and solving for g we obtain

u=A"TTx; (3.6)
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which is strictly only valid for a vehicle with three non-coplanar wheels (A square and
invertible). Since x; is constant in the absence of external torques, the vehicle can thus be

maintained stationary at any attitude by varying the wheel momenta p.

A useful extension of this result is that given a desired attitude for the vehicle, known
wheel inertias and orientations in F3, and a known constant total momentum in F;, we
can calculate the required wheel angular velocities to maintain a stationary platform as

follows:

From Egs. (2.14) and (2.15), we know
h, = LATG + Lo, (3.7)
Noting that for a stationary platform, & = 0, we can solve for &, to obtain
&, =17'h, (3.8)
Recognizing from Eq. (2.24) that h, = h,p, we can substitute into the above to obtain

&, = h I 'u (3.9)

@, = hy (AL,)—1 x (3.10)

Finally, substituting from Eq. (3.5) for x results in

~ - -\ -1
@, =h, (AL) " Tx, (3.11)

A final useful extension of Eq. (3.5) is calculation of final wheel momenta for a
maneuver. Given rotation matrices relating the body frame to inertial at an initial and
final time (T, and T;), initial wheel momenta p,, and using the fact that x; is constant,

it is easily shown that

p,=AT'T,T] Ap, (3.12)
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As a simple example, consider a vehicle with three orthogonal wheels (A = A~! = 1)
and total angular momentum vector pointing in the &; direction (x; = (1 0 0)7). We

assume the vehicle is stationary in ;.

If we wish to have the spacecraft b, axis aligned with the angular momentum vector
(and thus parallel to &;), then T, = Z, so by Eq. (3.6), # = (1 0 0)”. In other words,
to maintain this attitude, only W; is rotating, such that it contains all of the angular

momentum of the vehicle.

To demonstrate that this attitude is not unique and that any is achievable (given our
previous assumptions), let us now assume that the vehicle has been reoriented (without
external forces) by a negative 45° rotation about the b axis and is again stationary. The
total momentum has not changed with respect to ;. Using Eq. (3.12), we find that now
p = (1/4/2 1/v/2 0)7, meaning that both W; and W, are in use and each contribute
half the total angular momentum of the vehicle. The angular rates of the wheels necessary
for given wheel inertias and vehicle total angular momentum could be calculated using

Eq. (3.10).

One final but important point which was identified by Hall [8] is the following: Al-
though the relationship between the platform and momentum wheel angular momentum
vectors direction and magnitude is uniquely determined by the stationary platform condi-
tion x = Ap, the attitude of the spacecraft with respect to inertial space is determined
only within a rotation about the angular momentum vector. Thus, for all the maneuvers
we will perform in the following sections, even though we can control the direction of the
spacecraft angular momentum vector within the body, we cannot control the body rotation
with respect to that vector. This will be particularly important when analyzing final state

errors at the completion of maneuvers.

We will now address some additional issues regarding use of the wheel momentum
ellipsoid to specify the stationary platform condition, derive two classes of wheel torque
control laws for rest-to-rest attitude maneuvers, and run several representative simulations

for actual spacecraft to characterize the utility and behavior of these control laws.




3.2 Unachievable Regions on the Wheel Momenta Ellipsoid

Since the wheel momenta ellipsoid is normalized (scaled by 73,,), interpretation of
points on the ellipsoid can be misleading when used to assess momentum transfer in actual
spacecraft. There may in fact be regions on the wheel momenta ellipsoid that are un-
achievable because they require unrealistically high angular momentum for the individual
wheels. Momentum wheels obviously have fixed axial inertias and maximum achievable
angular rates, thereby limiting the total momentum an individual wheel can generate, as
well as the total momentum that can be generated by the set of three wheels in certain

directions within the body frame F;.

Consider a spacecraft using three orthogonal momentum wheels, with axial inertias
of I, = 0.1 kg m® and maximum achievable angular rates of w,p.e, = 100 rad/s. The
maximum momentum that a single wheel can store (in its axial direction) is thus Pmas =
I,wymee = £10 kg m?/s. The wheel momenta ellipsoid representing the stationary platform
condition for this vehicle is identical to Fig. 3.3. If we consider two wheels with spin
axes aligned with the b; and b, body axes, the total momentum generated by these
two wheels at maximum spin rate is (\/5) Bumas ® +14.14 kg m?/s in the :t(l/\/f)lgl +
(1/ \/i)ﬁz direction. Obviously, extending this argument to three wheels, approximately
+17.32 kg m?/s can be generated in j:(l/\/?_))f)l + (1/\/5)132 + (1/\/5)53 direction.

First, let us suppose that we wish to maintain the platform in an inertially fixed
orientation and the spacecraft total angular momentum magnitude is hy = 12 kg m?/s,
perhaps the result of buildup of angular momentum due to solar pressure and gravity
gradient torques over time (the motivation for Chapter 5). Given the calculations in the
last paragraph, it is apparent that a single wheel alone cannot produce enough angular
momentum to maintain a stationary spacecraft. However, two wheels working together
can. Thus, the only unachievable regions on the wheel momenta ellipsoid are at points
“outside” the six planes which intersect the ellipsoid at the point on the 4 axes where the
wheel momentum maxima are reached (see Fig. 3.10). There are points in the p; — us,
g1 — pt3, and po — ps planes that can be attained, and thus there are certain attitudes at

which the spacecraft can be held stationary.




Figure 3.10 Ezample 1 - Achievable Regions on Wheel Momenta Ellipsoid

In the second example, assume that the total angular momentum magnitude is in-
creased to b, = 15 kg m?/s. Now, not only is a single wheel unable to maintain a stationary
platform, but any two wheels working together are also insufficient. Certainly, three wheels
at maximum angular rates can generate enough momentum. In terms of the wheel mo-
menta ellipsoid, this means that no points on the ellipsoid in the uy —pto, 1 — 3, or po — 3
planes can be reached given the wheel physical limitations, and in fact only certain regions
off these planes are achievable. The achievable regions on the wheel momenta ellipsoid
are those regions of the ellipsoid “inside” the six planes that define the maximum wheel

momenta (see Fig. 3.11).

As a final extreme example, consider the case where h, = 20 kg m?/s. It should be
obvious that since even three wheels working together at maximum angular rates cannot
generate more than 17.32 kg m?/s, there is no way that the vehicle can be kept stationary
using the momentum wheels alone at any attitude. Graphically, the six planes intersecting
with the ellipsoid mentioned previously have moved inward so that the ellipsoid surface is

entirely outside the cube enclosed by the planes.




mu3

Figure 3.11 Ezample 2 - Achievable Regions on Wheel Momenta Ellipsoid

It is in such a case as this that the addition of the fourth momentum wheel proves
useful. Since the redundant wheel is usually oriented such that it is non-coplanar with any
other two wheels, it can provide a component of angular momentum in the direction of each
of the other three wheels, thereby effectively increasing their momentum storage capacity.
This in turn allows the wheels to maintain a stationary platform at higher total angular
momentum magnitudes. In this example, if the fourth wheel spin axis were described
in the body frame as a5 = (1/v/3 1/v/3 1/+/3)T, the maximum angular momentum
capacity in the direction of each of the other three primary wheels is increased by a factor
of 1/+/3 ~ 0.58 to approximately 15.8 kg m?/s. Furthermore, in the direction of the
fourth wheel, the total momentum capacity of the four wheels at maximum angular rates
is increased to approximately 17.32+10.00 = 27.32 kg m?/s. Thus, in our extreme example
above, the addition of the fourth wheel would result in regions of the momenta ellipsoid
that are achievable (similar to Fig 3.11), and thus attitudes for which the vehicle can be

held stationary.
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The implications of the fourth wheel in maneuvers are apparent; if we wish to reorient
the spacecraft from one stationary condition to another, the wheel torque control must
be such that the wheel momenta are within the achievable regions defined by the cube
discussed above. Also, if we choose a torque control law that runs tangent to the surface of
the wheel momenta ellipsoid (which is the point of Section 3.5), we obviously must choose

that path such that it avoids the unachievable regions on the surface.

Although the above examples were for sets of orthogonal wheels, it should be apparent
that the same arguments hold for non-orthogonal wheels. The only difference is that since
the wheel momenta ellipsoids are not symmetric with respect to the p axes, the intersection

of the six planes with the ellipsoid produces slightly different results (see Fig. 3.12).

Figure 3.12 Achievable Regions on Wheel Momenta Ellipsoid (Non-orthogonal Wheels)
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Now that we understand the limits of the stationary platform condition and the use
of the wheel momenta ellipsoids to visualize it, let us develop some torque control laws
to allow us to reorient the vehicle from one stationary platform state to another (rest-to-
rest). In Section 3.4 we address a simple constant wheel torque case to use as a baseline

for comparison with a sub-optimal control law developed in Section 3.5.

Before continuing, however, it is important to step back briefly and review some
of the work accomplished by Hall [8] in terms of stability of motion and allowable wheel

torques.
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3.3 Allowable Torque Magnitudes

Hall [8] shows that for our idealized rigid spacecraft with embedded momentum
wheels, the system Hamiltonian, using non-dimensional variables, is given by
1
H= 5xTJ-lx - uTATI 'x + f(C) (3.13)

where f(C) is an arbitrary function of the first integral C = x"x/2 = 1/2 and does not

affect the resulting equations of motion.

Furthermore, Hall shows that the Hamiltonian satisfies

H= sTa— =—-eTATI 'x (3.14)
op

He then continues by analyzing equilibrium motions of the integrable zero torque

case (¢ = 0), plotting equilibrium surfaces in “pH space” (which is 4-dimensional for a
vehicle with three wheels), and using the method of averaging to show that for the case
of small constant torques (¢ = €0, €< 1, o = const) the equilibrium surfaces contain
exact solutions to the averaged equations. Extending this approach to that of small but
not necessarily constant torques (such as the sub-optimal control laws in Section 3.5), he

states [9:10]

...trajectories which start on or near an equilibrium surface in [uH] space will
remain near the equilibrium surface as long as no resonance zone (instantaneous
separatrix) is traversed. If the initial condition is also near a stationary platform
equilibrium (w = 0) and the torques are chosen so that the trajectory in [u]
space satisfies the stationary platform condition ..., then the angular velocity
of the platform will remain small throughout the maneuver.

Thus, in our applications, for the stability analysis to be strictly valid, all wheel
torque trajectories must start on an equilibrium surface in pH space, must remain small,

and should not cross a resonance zone (which might result in capture into unsteady motion).

Since the primary purpose of this report is to assess the utility and limitations of

a sub-optimal wheel torque control law for real vehicles, and because the visualization

3-14




of equilibrium surfaces in pH space for a three wheel vehicle is difficult, stability of the

various trajectories will in general not be addressed.

Stability issues aside, as we shall see in more detail in the examples in Chapter 4,
violations of the small torque assumption also result in errors in the final vehicle states.
Specifically, any movement along the stationary platform wheel momenta ellipsoid must
violate the stationary platform condition in Eq. (3.2) because for there to be motion of
the vehicle, no matter how small, w cannot be zero. Thus, the angular momentum vector
x will move with respect to the platform during maneuvers, and we shall see that the
character of this motion (large or small platform angular velocities) is dependent on the

choice of the torque scaling parameter e.

Two other basic assumptions for this analysis are that at the initial time the platform
is stationary and at the completion of maneuvers, all torques are turned off such that the
momentum wheels remain at the final angular velocities (no energy loss in wheels). In real
applications, of course, a controller using state feedback may be necessary to stabilize the
platform prior to beginning such a maneuver as well as to reduce final state errors, and
there may be bearing or other losses in the wheels requiring small torques to maintain

constant angular velocities after the maneuver.
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3.4 Direct Rest-to-rest Trajectories

As mentioned previously, there are certainly applications for “large angle” spacecraft
maneuvers that start and end with a stationary platform (& = 0 at ¢, and ?;). This
general class of maneuver is commonly referred to as rest-to-rest, and includes both the
arbitrary intermediate state sub-class (& # 0, ¢, < t < t;) and the stationary platform
maneuver sub-class for which platform angular rates are small throughout the maneuver.
In this section, we will focus on a special case of the former sub-class, known as the direct
rest-to-rest maneuver. The latter sub-class will be discussed in the next section of this

chapter.

The direct rest-to-rest maneuver (hereafter referred to as the direct trajectory) is
depicted in Fig. 3.13 in terms of the wheel momenta ellipsoid.

I

=

Y

Figure 3.13 Direct Trajectory on Wheel Momenta Ellipsoid

It is apparent that while both the initial and final wheel momenta states satisfy
the stationary platform criteria (are on the ellipsoid surface), the intermediate states do
not, and we thus do not expect to have small platform angular velocities throughout the
maneuver. As we shall see in later sections, violation of the stationary platform condition
during these maneuvers also results in final state errors (in x), so that even though the

total angular momentum is constant (no external torques), we can strictly only use the
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method outlined in section 3.1 to calculate the attitude of the vehicle at the initial and

final times if the vehicle is totally stationary.

The wheel torque control law for this direct trajectory from p, to p; is

jp=e=¢ Z mlat (3.15)

where ¢ is the small parameter discussed in section 3.3. Note that using this approach, €

is a positive constant.

Assuming t, = 0, the final (non-dimensional) time for such a maneuver given initial

and final rotor momenta is found to be

=01 (3.16)

Using Eq. (2.27), the dimensional time is easily calculated and is given by

~ I~c |u’f_”’o
tyr==— | ——— .
s (ho) p (3.17)

By solving Eq. (3.16) for € and substituting in for {; from Eq. (3.17), we can find the value

of the small parameter € required to accomplish the maneuver in time i

[ Ky — Ky
e= (L ‘Lﬂ— (3.18)
3 g

o

, while it is inversely pro-

Note that € is directly proportional to I, and | By = K,
portional to h, and t . Thus, we would expect larger required torques for larger vehicle
inertias and longer torque trajectories, while increasing wheel momenta and final times

will result in smaller required torques.

A plot of € vs. t; for the Hubble Space Telescope, with I, ~ 1.8 X 10° kg m?, using
wheels W, — W5 with g, = [1 0 0], pu; = [0 1 0] for both h, = 100 and 200 kg m?/s, is

shown in Fig. 3.14.

3-17




0.5

0.45

0.4

wF

F N

Final time (sec)

Figure 3.14 Direct Trajectory - Small Torque Parameter € vs. ff for varying ko

As we would expect, reducing I, /h, by 1/2, either by doubling h, or halving I, results

in required torques for a given {; being reduced by a factor of 2 as well. Recalling from

our earlier discussion about allowable torques and the resulting state errors during and at

the end of maneuvers, we see that there is a significant trade-off between final time and

wheel torques. This trade-off will be discussed in more detail for the individual vehicles of

interest in Chapter 4.
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3.5 Sub-optimal Trajectories on the Wheel Momenta Ellipsoid

While the direct trajectories discussed in the previous section are certainly easy to
calculate and simple to implement, it will become apparent from examples in Chapter
4 that the relatively large body angular rates that result during the maneuver for large
wheel torques could prove harmful to flexible and/or sensitive components on board. We
therefore wish to derive a wheel torque control law that not only reorients the vehicle from
one stationary orientation to another, but that maintains small angular velocities of the

platform throughout the maneuver. One could consider such a maneuver to be “smooth”.

Large angle reorientations for spacecraft using momentum wheels are often accom-
plished via “Euler-axis” or “eigen-axis” rotations, which are finite angle rotations about a
body fixed axis of rotation [11:10-11]. While simple in concept, calculations to determine
such maneuvers are somewhat computationally intense, requiring the solution to an eigen-
value problem. Today, such calculations are typically performed by high speed ground
segment computers based on down-linked telemetry, then sent to the relatively “dumb”
satellite via the command up-link for immediate or delayed execution. However, the logical
and inevitable progression toward greater spacecraft autonomy (driven by lowered opera-
tions costs) dictates on-board attitude determination as well as large angle maneuvering
capability. Also, although these maneuvers can be accomplished rather quickly, they can

also result in undesirably large body angular velocities.

The sub-optimal control law discussed herein is a “smooth” maneuver in the sense
that it reduces unwanted body motions, and requires only matrix multiplications and
transpose operations to perform (with the exception of final time calculations which need

not be done on-board).

Recalling the discussion in Section 3.2, Hall [8] showed that for a spacecraft using
two momentum wheels, if a wheel torque trajectory was calculated that stayed on a stable
surface in the uwH space, used small torques (¢ < 1), and was tangent to the stationary
platform wheel momenta ellipse, a “smooth” reorientation could be performed with only

small induced body angular velocities.
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Hall derived this torque control law by differentiating the wheel momenta ellipsoid

Eq. (3.4) with respect to time, yielding
PTATAp =0 (3.19)

Since AT A is positive definite and we are not interested in the trivial solution g = 0, this
requires that 47 lie in the left nullspace of AT A p. In the two wheel case, it is thus evident

that the wheel torque law is given by

pn=c . . m (3.20)

which is easily seen as a slowly moving trajectory along the tangent to the wheel momenta

ellipse in two dimensions. Note as well that 474, = 1 and afa, = 1.

To extend this simple result to three wheels, for which the wheel momenta ellipsoid
is three dimensional, we define a new orthonormal frame F, with the same origin as F,,
but rotated such that the vy axis is co-linear with u, and both x, and p; lie in the v; — vy
plane. The intersection of the v; — v, plane with the surface of the wheel momenta ellipsoid
is thus a wheel torque trajectory that will transfer momentum from u, to p; (See Fig.
3.15). Note that strictly there are two trajectories between these points, depending on
the sign of € chosen (the “long” and “short” trajectories). We will be primarily concerned
with the “short” trajectory since we expect this to require less maneuvering time. For the

éub—optimal control law derived below, this corresponds to negative e.

For a vehicle with orthogonal wheels (wheel momenta ellipsoid is a sphere), this
is seen to be the “great circle” trajectory, and is the minimum distance (in p space)
between p, and p; on the sphere. For vehicles whose wheels are more co-planar or co-
linear, this path obviously is no longer minimum distance, but is a close approximation.
In an extreme case of the ellipsoid becoming quite long and thin (see Fig. 3.6), the
minimum distance trajectory would best be approximated by the ellipse formed by taking
a cross-section through u,, p1;, and their reflections across the longest principal axis of

the ellipsoid. However, since spacecraft typically have pyramidal wheel arrangements,
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Figure 3.15 Sub-optimal Trajectory on Wheel Momenta Ellipsoid

the wheel momenta ellipsoids are more spherical than cylindrical, and the simpler result

obtained below with this assumption should be adequate.

Finding the rotation matrix T,, relating F, to F, is straightforward. The basis

vectors for F, expressed in F, are

i/l = l‘l’o/ |”’o| (321)

vy = (No X I'l’f) [ B X l"f| (3.22)

ilg - 1)3 X i)l (323)
so that

T;w"_— 1')1 132 i/g (324)

This orthonormal matrix allows us to transform a vector v expressed in F, to its equivalent

form p in F, through the relationship

p=T,v (3.25)
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Substituting from this equation for g in Eq. (3.4) yields the stationary platform wheel

momentum ellipsoid expressed in F,
VI TI, ATAT,, v =1 (3.26)

Looking at the trajectory with respect to the new frame F,, we note that the &3 component

of v = (v; v, v3) along the trajectory is zero, so that Eq. (3.26) in expanded form now

reduces to
a{al a,{az 141
vV, Vg =1 (327)
ala, ala, Uy

where a; and a; are the first two columns of AT, . Note that since T, is post-multiplying

A, the diagonal elements aTa; and af a, are not unity in this case.

Equation (3.27) is the same form as the stationary platform wheel momenta ellipsoid
Eq. (3.4) for the case of two wheels, expressed in F,. Thus, the same control law as

Eq. (3.20) applies to the three wheel case, with 73 = 0

a?ag ag’az 0
v=¢| —afa; —afa, 0 |v=€Bv (3.28)
0 0 0

Now, by solving Eq. (3.25) for v and recognizing that T;,} = Tf,,, we can substitute
into Eq. (3.28) to obtain
TI,jp = BT, p (3.29)

or

p=eT,BT], u (3.30)

which is the sub-optimal wheel torque control law for a vehicle using three momentum
wheels. Use of this control law with “small” € should result in a reorientation from an

initial p, to a final p; with little induced platform motion.

The time required to accomplish a stationary platform maneuver is certainly of in-

terest to us, as this will be a significant factor in assessing the utility of these control laws
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for real applications. As with the direct trajectory, we assume ¢, = 0 and that we are given

initial and final wheel momenta p, and ;.

We return to the wheel torque control law in the F, frame, given in Eq. (3.28),
eliminating the state v since it is zero and constant. This results in a system of two linear

constant co-efficient equations. The solution (at time ¢;) to this linear equation is
v; = By, = Ve vy, (3.31)

where the columns of V are the eigenvectors of B, e“A'f is a diagonal matrix with diagonal
elements e“**/, and )\; are the eigenvalues of B. Putting B into the form
By B

B = (3.32)
""'BZI _Bll

allows us to see that the eigenvalues will be purely imaginary as long as Bj3Bs; > BZ,.
In the case where F, = F,, the off-diagonal elements are 1 and the diagonal elements
are always less than 1 as long as the wheels are non-colinear. In the more general case,
the elements B;; are formed from inner products of the first two columns of AT,,, where
T,, is orthonormal, and we find that in all the cases presented herein the eigenvalues are

indeed imaginary.

Since the eigenvalues of B are purely imaginary (+j+/Bi12B21 — B;), we note that
eB is a rotation matrix [21:212]. If we define ¢ = €(1/Bi3Bs1 — B )t;, and recognize
that by definition of F, that v, = (1 0)T, then Eq. (3.31) can be written

cos¢ sin 1
Viy = ? ¢ v-! (3.33)
—sing cos¢ 0
Denoting the elements of the 2x 2 matrix V~! by V;;, and the matrix resulting from V~'v;

by v =(v; )T, Eq. (3.33) can be reduced through some manipulation to the form

cos ¢ 1 V1101 + Va1 13

-1 (3.34)
sin ¢ Vi + Vi Vo101 + Vi1,
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which can be solved for ¢ to obtain

_1 [ Vau + V11112)
=1 = 3.35
¢ = tan (V11?)1 + Vo102 ( )

Recalling the definition of ¢ above and the relationship between t and ¢ from Eq.(2.27),

this can be solved for the dimensional final time

i = (L L _ ) tan™! (M> (3.36)
ho €/ B12821 - Bll vllvl + VZIUZ

The magnitude of the small torque parameter € vs. t ¢ is obviously found directly from this

equation, and is provided here to motivate discussion.

L 1
o (L) (. _ ) tan™! (M) (3.37)
h, ty\/ Bi2Ba — B, Vi1v1 + Vaivs
Using this approach, to obtain positive final time values, the small parameter ¢ must

be negative.

Fig. 3.16 is a plot of |¢| vs. ¢; for the Hubble Space Telescope using the sub-optimal
control law. The boundary conditions and vehicle parameters are the same as for the direct
maneuver depicted in Fig. 3.14, with I, ~ 1.8x10° kg m?, using wheels W; — W5 with
p, =[100], p; = [0 10] for both h, = 100 and 200 kg m?/s. This corresponds to a 90°

maneuver, so that for € = 0.1, the spacecraft rotates at approximately 0.009°/s.

As with the direct trajectory, we note a significant trade-off between final time and
torque magnitude, and again see that reducing I,/ h, and/or increasing f; reduces the

required torques for this maneuver.

It might be tempting to conclude that since the direct trajectories have shorter path
lengths in F, than sub-optimal trajectories for identical initial and final conditions, the
maneuver times would also be less. However, as Figs. 3.17 and 3.18 show, this is not always
the case. Both figures are for the Hubble Space Telescope using wheels W; —Ws, with equal
total angular momentum and initial conditions (g, = [1 0 0]7). However, whereas the final

condition in the first case in p; = [0 1 0]”, in the second it is p; =~ [0.715 —1.086 —0.074]7.

3-24




0.5

0.45

Qo

5
Final Time (sec) x10*

Figure 3.16 Sub-optimal Trajectory - Small Torque Parameter € vs. t; for varying Ro

The explanation for this lies in the fact that the average wheel momenta for sub-optimal
trajectories are generally larger than for direct trajectories, and can thus be traversed
more quickly. As demonstrated, however, the relationship between ¢, #;, and the control

trajectory depends on the momentum wheels used and the boundary conditions.

Now that we have developed the wheel torque control laws for both direct and sub-
optimal trajectories, let us run some example simulations for both the GPS Block IIR and
Hubble Space Telescope vehicles, in an environment free from external perturbing torques.
This will allow us to compare both types of maneuvers, and particularly to assess the
utility of the sub-optimal control law for “real” vehicles. Then, in Chapter 5, external
perturbing torques will be introduced to allow assessment of the sub-optimal control law

for “real” vehicles in a more “realistic” environment.

3-25




0.5 T T

0.45

0.4 — direct 1

1
1
i
1
[
|I — — sub-optimal
0.351 |
}
[
l
\

0.1

0.05f RN

0.5

0.45

0.4 — direct 7

— — sub-optimal

5
Final Time (sec) 4

Figure 3.18 Case 2 - Comparison of € vs. t; for Direct and Sub-optimal Trajectories

3-26




IV. Unperturbed Maneuvers

In this chapter, specific examples of maneuvers using the GPS Block IIR and Hubble
Space Telescope vehicles will be presented. These two vehicles were chosen because they
both employ at least three momentum wheels for attitude control, but in varying degrees.
While momentum wheels are used only to offset small perturbative torques on the GPS
Block IIR vehicle, they are the primary attitude control mechanism for the Hubble Space
Telescope. The momentum storage capacities of the vehicles’ momentum wheels are thus
quite different, and the vehicles can be seen to represent two ends of the spectrum for

momentum storage device use.

Appendix D provides a functional block diagram of the simulation computer program
used to generate the results in this section. The main program (rotor.m.m) first calls the
data definition file (dat.gps.m, dat_hub.m) to load vehicle physical parameters, orbital
parameters, and simulation control parameters. Next, after calculating the appropriate
wheel torque control law for the maneuver (direct or sub-optimal), the program sends the
appropriate equations of motion (with or without perturbing forces) to the integration
subroutine (ode45.m). After integration is complete, important data is output in either

text or graphical format.

The simulation program has the capability to output more than 10 different data
plots, in both dimensional and non-dimensional values. However, the most important plots
that will be used in our analysis are the following: Torque trajectory relative to stationary
platform wheel momenta ellipsoid, torque trajectory relative to spacecraft total momentum
sphere, momentum wheel angular velocities vs. time, spacecraft angular velocities vs. time,

and three dimensional spacecraft attitude plots.

To minimize the number of examples that will be presented, let us first state the
objectives we wish to meet in the following two sections. For GPS, we will first perform
a maneuver from a specific stationary attitude to another (or close to it, depending upon
final state errors), using both the direct control law and sub-optimal control law, with
identical ¢ and h,, to show the difference in final state error and intermediate angular

velocities for each approach. Next, we will calculate the maximum allowable h, for each




vehicle, then perform the same maneuver using the sub-optimal control law several times,
varying the magnitude of ¢, to identify what value of € is reasonable in terms of final state

errors, maneuver time, and intermediate angular velocities.

4.1 GPS Block IIR Ezamples

As mentioned previously, the GPS Block IIR vehicle uses expendable fuel thrusters
for large angle maneuvers, and employs four reaction wheels, arranged in a pyramid fash-
ion, to offset small perturbative torques acting on the vehicle. The wheels are augmented
by a magnetic torquing system which is used for momentum dumping. The vehicle physi-
cal parameters are detailed in Appendix B. The difference in application between reaction
wheels and momentum wheels (nominal angular rates, commandable torques) will be ig-
nored in the following simulations, to better allow comparison between GPS and Hubble

Space Telescope.

We first note that the maximum momentum a single wheel can generate is S
48 kg m?/s. Thus, to allow arbitrary reorientations, h, should be set as less than 8 kg m?/s
in the simulations. The ratio of wheel inertia to maximum principal inertia of the vehicle
is 1, /fmax ~ 0.0046. Although not derived herein, it can be shown that if we assume
a single wheel is attempting to absorb the angular momentum for a pure (stable) spin
about the major axis of the vehicle, and that the wheel is parallel to the major axis, the
maximum initial rate of the vehicle such that the wheel can achieve a stationary platform
is approximately 4.014 x 10~ rad/s. Similar analysis for a minor axis spin results in a
maximum angular rate of approximately 1.030 X 10~2 rad/s. While this analysis is based
on several simplifying assumptions, it does allow us to see that only small vehicle angular
velocities can be offset using the momentum wheels, which requires that final state errors

be within or below this range to be controllable using the momentum wheels alone.

To be realistic, we must also be concerned about the magnitude of the torques used,
since in actual applications we cannot exceed the maximum nor go below the minimum
commandable values. Using Eq. (2.26), noting the values for minimum and maximum

commandable torques from Appendix B, the known value of I, = 4.5266 x 103 kg m?, and




h, = 5 kg m?/s results in

gma:z:Ic

mas = T~ 12.86 (4.1)
gminjc

emin = TSR 0.05 (4.2)

The purpose of the following simulations is both to compare direct and sub-optimal

control laws for attitude maneuvers, as well as demonstrate the growth in final state errors
with increasing torque scaling parameter e.
Discussion and comparison of the simulation results for both GPS Block IIR and the

Hubble Space Telescope is deferred to section 4.3.
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GPS Ezample 1 - Direct vs. Sub-optimal Trajectories

As our first example, we will compare direct and sub-optimal trajectory maneuver
times, angular velocities, and final state errors for a combined 45° rotation about the bs and
b, axis with W, initially containing all the angular momentum, using wheels W, Wy, W,.
Table 4.1 summarizes the simulation parameters. The results are summarized in Figs.

4.1-4.12 and Table 4.2.

Table 4.1 GPS Example 1 - Direct vs. Sub-optimal Simulation Parameters

parameter value
~A (a1 as a4)
h, 5 kg m?/s
€ 0.01
d)oaeoa ¢o 070’0
¢f>0f’¢f 450‘;450’0
b | (1 0 0)

Table 4.2 GPS Example 1 - Direct vs. Sub-optimal Simulation Results

result Direct Sub-optimal

iy 24 hr 22 min 28 hr 38 min
(1. 3.461 x 10™* rad/s 1.895 x 107° rad/s

@51, 00 590.3 rad/s 613.2 rad/s
()], | 2788 % 107% rad/s | 1.526 X 1075 rad/s
¢;,0;,7; | —53.30,119.48,—5.133° | 48.35,44.04, —2.27°
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GPS Ezample 2 - Sub-optimal Trajectory

In the second example, we will now address the sub-optimal trajectory only, this time
increasing € to 0.05. The other simulation parameters are identical to the first example.
Table 4.3 summarizes the simulation parameters. The results are summarized in Figs.

4.13-4.16 and Table 4.4.

Table 4.3 GPS Example 2 - Sub-optimal Simulation

Parameters
parameter value
é (a1 az ay)
h, 5 kg m?/s
€ 0.05
¢oa00,¢o 0,070
¢f70f7¢f 450,45070
b | (10 0)

Table 4.4 GPS Example 2 - Sub-optimal Simulation Results

result Sub-optimal

i 5 hr 43 min
(] 9.482 X 10~° rad/s

|5, 00 613.2 rad/s
lo(E)],0, | 7172 X 107° rad/s
é7,0;,%; | 49.12,43.96, —3.84°
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GPS Ezample 3 - Sub-optimal Trajectory

In the last example for GPS Blk IIR, we again address the sub-optimal trajectory
only, this time increasing € to 0.10. The other simulation parameters are identical to the
first two examples. Table 4.5 summarizes the simulation parameters. The results are

summarized in Figs. 4.17-4.20 and Table 4.6.

Table 4.5 GPS Example 3 - Sub-optimal Simulation

Parameters

parameter value
é (a1 as a4)
h, 5 kg m?/s
€ 0.10

¢0700,¢0 07070

¢f,0f,¢g 45°,45°,0
Ko (1 0 0)

Table 4.6 GPS Example 3 - Sub-optimal Simulation Results

result Sub-optimal
iy 2 hr 52 min
(] 1.897 x 10~* rad/s
@5, 00 613.2 rad/s
|6(5)|,0p | 7-999 X 107° rad/s
1,05, %; | 48.58,43.34, —3.64°
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4.2 Hubble Space Telescope Examples

Unlike GPS, the Hubble Space Telescope uses momentum wheels exclusively for
attitude control, both for large angle maneuvers and fine pointing control. Although data
on the wheel inertias and angular rates were available, their orientation within the vehicle
was not. Thus, the same arrangement as for GPS Block IIR was assumed for simplicity

see Appendix C). A magnetic torquing system is used for momentum dumping [2].
g

The Hubble pointing control system is currently able to slew the vehicle through a
90° reorientation using and eigen-axis maneuvering scheme in approximately 18 minutes
[2], with 0.01 arc-second pointing accuracy. It will thus be of interest to compare the

sub-optimal control results to these values.

The maximum momentum a single wheel can generate is Fnaw & £263.4 kg m? /s.
While this is obviously much greater on an absolute scale, the ratio of wheel inertia to
maximum principal inertia of the vehicle is actually smaller than for GPS Block IIR at
I / Iaw ~ 0.0033. To allow arbitrary reorientations, h, should be set somewhat less than
263.4 kg m?/s in the simulations. In all the examples below, h, is set at 200 kg m?/s.
As we shall see in Example 3, due to the wheels chosen, this results in there being small
regions of the wheel momenta ellipsoid that are unachievable, resulting in excessively high
wheel speeds for trajectories that traverse these regions. The unachievable regions are only

shown in the figures for Example 3, but they are present for Examples 1 and 2 as well.

Although not derived explicitly, it can be shown that if we assume a single wheel
is attempting to absorb the angular momentum for a pure (stable) spin about the major
axis of the vehicle, and that the wheel is parallel to the major axis, the maximum initial
rate of the vehicle such that the wheel can achieve a stationary platform is approximately
3.299%1073 rad/s. Similar analysis for a minor axis spin results in a maximum angular rate
of approximately 1.215 X 10~2 rad/s. While this analysis is based on several simplifying
assumptions, it does allow us to see that only small vehicle angular velocities can be offset
using the momentum wheels, which requires that final state errors be within or below this

range to be controllable using the momentum wheels alone.
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To be realistic, we must also be concerned about the magnitude of the torques used,
since in actual applications we cannot exceed the maximum nor go below the minimum
commandable values. Using Eq. (2.26), noting the assumed values for minimum and maxi-
mum commandable torques from Appendix C, the known value of I, = 1.7815 x 10° kg m?,

and h, = 200 kg m?/s results in

~maxIC

€mee = TmITZC 0,891 (4.3)
h3
g ‘njc

Emin gminle ~ 0.001 (4.4)
hZ

The purpose of the following simulations is both to compare direct and sub-optimal
control laws for attitude maneuvers, as well as demonstrate the growth in final state errors
with increasing torque scaling parameter €. The last example is also useful in comparing the
sub-optimal control performance to the eigen-axis maneuvers mentioned above. Discussion
and comparison of the simulation results for both GPS Block IIR and the Hubble Space

Telescope is deferred to section 4.3.
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Hubble Example 1 - Sub-optimal Trajectory

In the first example for Hubble, we will address the sub-optimal trajectory only for
a combined 45° rotation about the 53 and Bl axes, with € set at 0.01. Momentum wheels
W, — Wjs are used, with W, initially containing all the momentum for the vehicle. Table
4.7 summarizes the simulation parameters. The results are summarized in Figs. 4.21-4.26

and Table 4.8.

Table 4.7 Hubble Example 1 - Sub-optimal Simulation

Parameters
parameter value
:A (a1 ap aj3)
ho 200 kg m?/s
€ 0.01
¢0)907 ¢o 0’ 070
¢f,9f,¢f 45°,45°,0
Ho (1 0 0

Table 4.8 Hubble Example 1 - Sub-optimal Simulation

Results
result Sub-optimal
17 45 hr 5 min
@, .. | 1.506 x 10~° rad/s
1@ |0z 287.4 rad/s
|5(E5)|,0e | 8-871 % 1076 rad/s
bs,0;,0; | 72.89,37.74, —18.44°
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Hubble FExample 2 - Sub-optimal Trajectory

In the next example, we again address the sub-optimal trajectory omly, this time
increasing € to 0.5. The other simulation parameters are identical to the first example.
Table 4.9 summarizes the simulation parameters. The results are summarized in Figs.

4.27-4.32 and Table 4.10.

Table 4.9 Hubble Example 2 - Sub-optimal Simulation

Parameters

parameter value
f’t (a1 ag aa)
h, 200 kg m?/s
€ 0.5

G0y 00,0 0,0,0

¢f79f’¢f 450’45070
Ko (1 00

Table 4.10 Hubble Example 2 - Sub-optimal Simulation

Results
result Sub-optimal
@], .. | 6.909x107* rad/s
195,200 287.4 rad/s
l&(ts)|,,, | 3.740 X 107 rad/s
¢s,0;,%; | 72.94,38.25,—2.89°
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Hubble Example 3 - Direct vs. Sub-optimal Trajectories

In this example for Hubble, both the direct and the sub-optimal control laws are used
to attempt a positive 90° “slewing” maneuver about the b, axis. To keep both maneuver
times and state errors reasonable, ¢ is set to 0.1. Wheels W; — W; are again used to
perform the maneuver, with W, initially containing all the angular momentum for the
vehicle. Table 4.11 summarizes the simulation parameters. The results are summarized in

Figs. 4.33-4.44 and Table 4.12.

Table 4.11 Hubble example 3 - Direct vs. Sub-optimal Sim-
ulation Parameters
parameter value
A (a; a; aj3)
ho 200 kg m?/s
€ 0.10
¢0’00’¢0 0,0,0
¢fa0fa¢f 0,90°,0
Ko (0 1 0)

Table 4.12 Hubble example 3 - Direct vs. Sub-optimal Sim-
ulation Results

result Sub-optimal Direct
iy 5 hr 30 min 3 hr 30 min
@], |1.702x10=* rad/s | 7.625 x 10~* rad/s
&5 100 336.7 rad/s 238.1 rad/s
10(5)],0a0 | 7-042 X 1075 7ad/s | 2.050 X 10~* rad/s
¢s,0,,%; | —0.65,89.39,0.28° | —22.69,96.15,16.49°
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Hubble Example 4 - Sub-optimal Trajectory

In the final example for Hubble, we will perform the same maneuver as in Example 3,
this time using wheels W;, W,, and W,, with W, initially containing all the momentum for
the vehicle. Table 4.13 summarizes the simulation parameters. The results are summarized

in Figs. 4.45-4.50 and Table 4.14.

Table 4.13 Hubble Example 4 - Sub-optimal Simulation

Parameters
parameter value
é (a1 a; ay)
h, 200 kg m?/s
€ 0.1
b0 0050 0,0,0
¢f70f,¢f 0?900’0
o (0 1 0

Table 4.14 Hubble Example 4 - Sub-optimal Simulation

Results
result Sub-optimal
ty 3 hr 53 min
&],.., | 2.406 X 107* rad/s
(=R 238.1 rad/s
&), | 4816 X 107° rad/s
¢;,0;,%; | —0.82,90.43,0.70°
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4.8 Summary of Results

GPS Example 1 and Hubble Example 3 both compared direct and sub-optimal ma-
neuvers for a specified initial conditions and desired final wheel momenta and vehicle atti-
tude (See Tables 4.2 and 4.12). As discussed in Section 3.5, the relative time to complete a
maneuver using both approaches varies depending on the parameters of the problem. For
these two somewhat dissimilar examples, the sub-optimal trajectory required between 2

and 4 hours longer to complete the maneuver than the direct trajectory.

For both examples, the the maximum wheel speeds for the direct trajectory were well
below the maximum allowable values, with the sub-optimal trajectory requiring slightly
higher speeds. While the wheel speeds for GPS were well below the 943 rad/s limit for both
approaches, the sub-optimal trajectory for the Hubble example exceeded the maximum of
314 rad/s for a small portion of the simulation. A look at the wheel speed histories in
Figures 4.5, 4.6, 4.37, and 4.38 shows that it is due to the quadratic form of the sub-optimal
control law that the maximum is reached in the sub-optimal cases. Thus, the sub-optimal
control law is infeasible due to wheel speed limitations for smaller values of total angular
momentum than is the direct trajectory. Recalling our discussion of achievable momenta
ellipsoid regions in Section 3.2, it is apparent that trajectories that have initial and final
states near the axes planes in F, and near the “ends” of the major axis of the ellipsoid will
traverse regions of the ellipsoid requiring larger wheel momenta due to the nature of the
sub-optimal control law. In such cases, other trajectories on the ellipsoid surface would be
necessary, or different sets of momentum wheels could be used. Hubble Example 4 uses Wi,
W,, and W; to perform the same maneuver with the same total angular momentum, using
the sub-optimal control law. Note that using these three wheels, the sub-optimal trajectory
no longer traverses the unachievable regions of the ellipsoid, the final attitude is very close
to desired, and the resulting maximum wheel speeds are below the limit throughout the
simulation (Table 4.14). This clearly demonstrates the advantages of having a redundant

non-coplanar wheel in momentum limited situations such as Example 3.

In terms of maximum vehicle angular velocities during maneuvers, the sub-optimal
trajectory is clearly superior. While absolute angular velocities remained small for both

direct and sub-optimal trajectories (due to small wheel torques), the relative magnitude for
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the direct trajectories was between 4 and 18 times larger. This is certainly not surprising
given the definition of the stationary platform condition and the way in which each torque

trajectory traverses the stationary platform wheel momenta ellipsoid.

What is interesting are the final vehicle angular velocities using each approach for
the two vehicles. One might expect that the sub-optimal trajectories, since they maintain
smaller angular velocities throughout the maneuver, would “end up” with smaller final
angular velocities. However, a glance at the results shows that this is not true in GPS
Example 1. Deviations from the stationary platform condition (requiring x = Ap and
w = 0) can be visualized by the magnitude of the “humps” on the torque trajectory traced
on the total momentum sphere (Figures 4.3,4.4 and 4.35,4.36). Thus, larger deviations
(caused by larger € and/or straying farther off the wheel momenta ellipsoid surface) result
in larger humps and larger variations in angular velocities. The final angular velocities
(which can be thought of as state errors from the nominal w = 0) depend on the distance
between the actual final state x4, vs. the desired final state x; which is calculated from
the stationary platform condition x; = Ap; in x space at the time when the wheel torques
are turned off. This is difficult to see in the GPS example (since € is much smaller), but in
the Hubble example (Fig. 4.36), it is obvious that x, is farther from x; (denoted by the
X on the sphere) in the direct trajectory case. However, because the period of the humps
plays as important a role as the amplitude, there may be cases where the final state just
happens to be closer to the desired state for the direct trajectory, even though absolute

variations in angular velocities are greater. This situation occurs in Hubble Example 3.

Perhaps the most important results to consider are the errors in the final attitude
after each maneuver. As shown in Table 4.12 and Figures 4.43 and 4.44, the sub-optimal
control law results in final attitude within 0.65° of desired, while the direct trajectory
‘leaves the vehicle over 20° off in some directions. As discussed at the end of Section 3.1,
the final attitude for both trajectories is off by a finite rotation about the total angular
momentum vector X, recognizing that there are final state errors as well. It is clear that for
this example, the sub-optimal control results in a much smaller necessary rotation about

x and thus significantly smaller final attitude errors.
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Turning now to a comparison of the sub-optimal trajectories for varying values of
¢ (GPS Examples 1-3, Hubble Examples 1-2), it is evident that increasing € for a given
h, reduces maneuver times but results in larger intermediate and final angular velocities
and greater final attitude errors. These results are certainly not unexpected given the

discussion earlier in the chapter.

What is interesting, though, is that when € is increased significantly (e.g. 0.5 in Hub-
ble Example 2), maneuver times become reasonable (less than an hour), angular velocities
during the maneuver increase, yet the motion of the vehicle is still much “smoother” than
the direct maneuver with much smaller torques (see Hubble Example 3). As a result,
maneuvers can be accomplished in realistic time-frames and yet maintain small platform
angular velocities and achieve a final attitude near the desired one. Although maneuver
times using this approach were still greater than can be achieved currently with the Hubble
using eigen-axis maneuvers, the nature of the motion is “smooth” and thus desirable. Ob-
viously, the maximum value of € found previously cannot be exceeded for a given ko, since
this would result in commanding the wheel torque motors beyond their practical limit.
However, it is apparent that even at torques well below the maximum commandable (as
in Hubble Example 2), the sub-optimal control law can effect large angle reorientations in

reasonable times.

In all the examples for GPS and Hubble, the angular velocities at the end of the
maneuvers were all of order 10~ or smaller, while the maximum allowable body rates
calculated in Sections 3.6.1 and 3.6.2 were of order 1073 — 10~2. Thus, one might assume
that the final angular velocities were acceptably small, and could be offset using additional
momentum wheel control. However, it is important to note that the analyses previously
performed to calculate these maximum body rates were approximate, and also assumed
that the wheels were initially not spinning and were torqued to absorb this momentum.
In all the examples above, the wheels already contain some angular momentum (i.e. they
are spinning), and thus must absorb this additional angular momentum due to the body
angular rates. Thus, depending on the magnitude of the body rates and the final wheel

momenta, the additional residual angular momentum may or may not be absorbable by

4-29




the wheels without momentum dumping (using magnetic torquers and/or thrusters in the

case of GPS).

Nonetheless, the examples show that the sub-optimal control is easily calculable, is
superior to the constant torque case in terms of body angular rates and final state errors,

and can be used to achieve large angle reorientations in reasonable times.

Now, let us introduce solar pressure and gravity gradient torques to increase the
“realism” of the simulations, and assess the affect on intermediate angular velocities and

final state errors.
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V. Perturbed Stationary Platform Maneuvers

As discussed during the development of the external perturbing torque equations in
Chapter 2, the magnitudes of solar pressure and gravity gradient torques vary depending
on vehicle configuration, orbital altitude, and spacecraft attitude. While gravity gradient
torques decrease in absolute magnitude with altitude, solar pressure torques remain essen-
tially constant (since P,,, = const). Thus, for a given vehicle, as orbital altitude increases,

the relative contribution of solar pressure to total external torques increases.

Both of these vehicles are in nearly circular orbits and are asymmetric in both physical
shape and inertia properties. Recalling the discussion about gravity gradient stability from
Section 2.3.1, we expect gravity to attempt to reorient both vehicles such that their minor
axes are aligned with the local vertical. Of course, solar pressure is also affecting the

attitude throughout the orbit.

GPS Block IIR vehicles are at much higher altitudes than Hubble and are significantly
less massive, and as a result, gravity gradient torques are of roughly the same magnitude
as solar pressure torques. Using Eq. (2.46) and (2.49) for GPS Block IIR an altitude
of 26,560 km, assuming F; is the principal frame (this is nearly true), with the b, axis
rotated +45° in the &, — &, plane initially, the solar pressure and gravity gradient torques
are both found to be on the order of 10~® N m. However, for Hubble, the same analysis
at an altitude of 6,993 km results in gravity gradient being of order 1072 N m at times,
while solar pressure torques remain of order 10 N m. The solar pressure torques are

larger on average for Hubble due to its larger surface area.

As a result of this difference in both relative and absolute external torques, we expect
that Hubble will experience greater fluctuation in angular momentum and thus larger state

errors during stationary platform maneuvers than GPS for equivalent maneuver times.

GPS Block IIR vehicles also have significantly longer orbital periods than Hubble
(% 12 hrs vs. ~ 1.6 hrs). If the Earth’s gravitational field were modeled more accurately
(not uniform), and if eclipse effects were included, both solar pressure and gravity gradient
torques would be more pronounced for the Hubble since multiple revolutions could occur

during a 2 hour maneuver.




All of these factors result in net changes in total angular momentum (h) of the
vehicle. The sub-optimal wheel torque control law developed in Chapter 3 assumed that h
was constant, since it was based on the stationary platform condition x = Ap which was
non-dimensionalized by an initial “nominal” angular momentum (h,). Changes in total
angular momentum from the “nominal” thus result in a change in the “size” of the total
momentum sphere and the stationary platform wheel momenta ellipsoid. Accordingly, even
though the sub-optimal control law is closed-loop in the sense that the control is calculated

based on vehicle states (g and x), it is based on an incomplete dynamics model.

In real applications, then, as the wheel momenta ellipsoid expands and contracts,
some provision is necessary to control the wheel speeds to “stay” on the ellipsoid surface
if a stationary platform is desired. Furthermore, if a particular stationary attitude is
desired, the wheels must be controlled to stay at a particular point on the ellipsoid surface.
Finally, if a stationary platform maneuver is attempted, the vehicle states would need to

be accurately estimated to allow constant modification of the sub-optimal trajectory.

Two examples are presented below which demonstrate the relative and absolute ef-
fects of solar pressure and gravity gradient torques during a stationary platform maneuver.
The first example is the same maneuver as performed in GPS Example 3 in Chapter 3,
with perturbing torques included. The second example is the same as Hubble Example 4,
with torques included. These two examples were chosen for several reasons. The maneu-
ver times are both reasonable and nearly equal (& 1 X 10* s), final attitudes were close to

desired, and final angular velocities were small (10~* — 10~° rad/s).

Analysis of the results of both simulations is presented in Section 5.3.




5.1 Ezample Using GPS Blk IIR

This example using GPS Block IIR is the same as GPS Example 3 in Chapter 4, with
solar pressure and gravity gradient forques acting on the vehicle. Table 5.1 summarizes

the simulation parameters. The results are summarized in Figs. 5.1-5.6 and Table 5.2.

Table 5.1 GPS example 4 - Perturbed Sub-optimal Simula-
tion Parameters

parameter value
A (a;, a; ay)
ke 5 kg m?/s
€ 0.10
$o505, 0 0,0,0
¢f79f’¢f 450545070
Ko (1 00

Table 5.2 GPS example 4 - Perturbed Sub-optimal Simula-
tion Results

result Sub-optimal
ty 2 hr 52 min
number of orbital periods 0.24
(] - 2.210 x 10™* rad/s
@1, 00 613.2 rad/s
[@(E)|,...0 1.577 x 10~* rad/s
5,05, 1.04,77.39,14.07°
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5.2 Ezample Using Hubble Space Telescope

This example for Hubble Space Telescope is the same as Hubble Example 4 in Chap-
ter 4, with solar pressure and gravity gradient torques acting on the vehicle. Table 5.3

summarizes the simulation parameters. The results are summarized in Figs. 5.7-5.12 and

Table 5.4.

Table 5.3 Hubble Example 5 - Perturbed Sub-optimal Sim-
ulation Parameters

parameter value
A (a1 a; a4)
ko 200 kg m?/s
€ 0.10
¢o’00’ d)o 0’070
¢fa9f7¢f 0790070
Ko (0 10

Table 5.4 Hubble Example 5 - Perturbed Sub-optimal Sim-
ulation Results

result Sub-optimal
17 3 hr 53 min
number of orbital periods 2.40
&, 0z 1.582 x 1073 rad/s
&4, 00 238.1 rad/s
o, e 5.690 X 107* rad/s
b;,0;,; 53.84,66.31, —54.49°
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5.8 Summary of Results

As expected, the maximum angular velocities during the perturbed maneuvers in-
creased for both vehicles compared to the unperturbed maneuvers. Again as predicted,
the increase for Hubble was more dramatic (= 6.56 times) than for GPS (& 1.16 times).
The maximum final angular velocities likewise increased more for Hubble than for GPS
(~ 11.81 times vs. &~ 1.97 times), and the pointing accuracy at the completion of the ma-
neuver is arguably better for GPS. The figures show that Hubble does indeed experience
both a greater absolute increase in total momentum (Figs. 5.2 and 5.8) and a greater rel-
ative increase (Figs. 5.1 and 5.7), due to its greater mass, surface area, and lower altitude

orbit.

The maneuver time for GPS was approximately 2.9 hours, compared to nearly 3.9
hours for the Hubble. This equates to nearly 2.4 orbital periods for Hubble vs. only 0.24 for
GPS. These relatively long maneuvers (compared to Hubble Example 2 which is less than
an hour) were intentionally chosen to show the relative affects of the perturbing torques
for these two vehicles. The same affects would be present, although less obvious, for more
“realistic” wheel torques (¢ ~ 0.5) as well. A glance at Figs. 5.3 and 5.9 shows that
while both experience general growth in angular velocities, the gravity gradient and solar
pressure torques are more evident in Hubble Example 5, particularly for w,. As expected,
the gravity gradient has more time to act on Hubble, and is attempting to align the minor

axis with the local vertical.

Even though the performance of the sub-optimal control law appears to be better for
for GPS than for Hubble in the presence of perturbing torques, in terms of final attitude
errors it is clearly inadequate in its present implementation. It is obvious that a closed
loop controller needs to be developed which can use estimates of the vehicle states (wheel
angular velocities, vehicle angular velocities, vehicle attitude) to control wheel torques
to traverse the stationary platform torque trajectory even when the momenta ellipsoid
is expanding and the angular velocity vector is moving with respect to inertial space.
However, the results of these simulations using it in open-loop form indicate that it is
more effective for vehicles experiencing smaller perturbing torques. This is particularly

true since increases in total angular momentum will result in the need for increased wheel
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speeds for almost all maneuvers, which could push the wheels to their commandable limits.
For the Hubble, such limits would be reached more quickly, resulting in more unachievable
stationary attitudes, or to avoid this, the need for more frequent momentum dumping

using the magnetic torquers.
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VI. Conclusions and Recommendations
6.1 Conclusions

This report focused on reorientations of a rigid spacecraft with three axisymmet-
ric momentum wheels. After deriving the equations of motion and expressions for solar
pressure and gravity gradient torques in Chapter 2, two conditions involving the spacecraft
angular momentum and wheel angular momenta were presented in Chapter 3 such that the
vehicle could be held stationary with respect to inertial space using the momentum wheels
alone. After deriving a constant wheel torque control law (direct trajectory) to transfer
wheel angular momentum without regard to intermediate angular velocities, a sub-optimal
wheel torque control law was presented that kept angular velocities small throughout the

maneuver.

Simulation runs using both the direct and sub-optimal control law were performed
in Chapter 4 for the GPS Block ITR and Hubble Space Telescope vehicles, in an environ-
ment free from external perturbing torques. As expected, intermediate angular velocities,
final angular velocities, and final attitude errors were significantly smaller using the sub-
optimal control law vs. using constant torques. Also, as the magnitude of the control
torques increased using the sub-optimal approach, angular velocities (intermediate and
final) increased, as did the final attitude error. However, by increasing the small torque
parameter € to 0.5, a 45° reorientation of the Hubble Space Telescope about two axes
was accomplished in 54 minutes using the sub-optimal control law, with acceptably small
intermediate and final angular velocities and final attitude close to desired. The resulting
motion was quite “smooth” compared to the direct maneuver, and showed the applicability

of this type of control scheme in real applications.

Gravity gradient and solar pressure torques were introduced in Chapter 5, and two
previous simulations were re-Tun with these torques present (one for GPS, one for Hubble).
As the preliminary analysis predicted, the effects on Hubble were much greater than on
GPS Block IIR for equivalent time spans, due to Hubble’s larger surface area, greater
mass, and lower altitude orbit. Intermediate and final angular velocities increased 6-11

times over the unperturbed maneuver, compared to only 1-2 times for GPS. Although




difficult to judge, the final attitude for GPS appeared to be slightly closer to desired than
Hubble.

All things considered, the sub-optimal control law worked well for both GPS Block
IIR and Hubble Space Telescope in the unperturbed environment. However, due to the
inherently open-loop nature of the control law as developed, it failed to perform well in
the presence of perturbing torques for either vehicle. The following section presents some
specific ideas for future research that will enhance the utility of this control law in real

applications.

6.2 Recommendations for Further Study

The sub-optimal control law as currently developed suffers from two basic weaknesses.
The first is that vehicle kinematics are not considered in the formulation, resulting in an
essentially arbitrary (although small) rotation about the angular momentum vector at the
completion of maneuvers, even in the unperturbed case. This certainly limits its utility
in real applications where precise control over pointing of communications and/or remote
sensing hardware is required. Future work could thus focus on including the quaternions
(or other attitude parameters) into the development of trajectories along the surface of
the stationary platform condition wheel momenta ellipsoid. The resulting torque control
trajectories would result in “smooth” large angle reorientations with reduced attitude
errors. Calculation of such trajectories would in all likelihood not be as simple as the one
developed herein, and thus care should be taken to avoid complicated computations that

could not easily be performed by the on-board computer.

Another limitation of this control law is that it is based on an assumption of perfect
knowledge of the vehicle momentum (x) and wheel momenta (), and is calculated as-
sumiﬁg that total angular momentum of the vehicle does not change. As demonstrated in
Chapter 5, external perturbing torques cause the angular momentum to change with time,
resulting in increased body motion and final attitude and state errors. The control law
thus needs to be modified to allow for adjustment of control torques based on actual vehicle
angular momentum. This would require an increase in the fidelity of the spacecraft models

to include vehicle and wheel angular velocity estimation from sensor data (star sensors,
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horizon sensors, wheel tachometers, etc.). The attitude control logic could thus calculate
current angular momentum, body rates, wheel angular momentum, and spacecraft atti-
tude, constantly determining the wheel torque trajectory necessary to move “closer” to the
stationary platform momenta ellipsoid (to regulate angular rates) as well as to accurately

reorient the vehicle to its final stationary attitude.

Once a sub-optimal control law is found that accounts for final attitude, it would be
interesting to compare the resulting trajectory to optimal control solutions of the problem.
Specifically, if one solved an optimal control problem with an objective function involving
the final states (x;, p;, and q;), as well as weighted penalties on state variations and
control usage, it would be interesting to see the results. Three cases would be of particular
interest. First, specifying the end-time to be equal to the sub-optimal maneuver would
allow direct comparison of state variations for the two approaches. Second, the problem
could be formulated to obtain a minimum time solution to see what the “fastest” trajec-
tory is (again compare state variations). Finally, leaving end-time free would result in
minimization of states and controls without regard to time, and the relative magnitude of
the resulting angular velocities as compared to the sub-optimal approach would be very
interesting. Hopefully, results would show that the sub-optimal approach is “close” to op-
timal control solutions (for the fixed final time and perhaps minimum time cases), and by

virtue of its simplicity, a candidate for implementation in future attitude control systems.
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Appendiz A. Constants and Unit Conversions

Physical Constants

e = 3.986012x 10° kg m®/s® Earth gravitational parameter [3:429]
P,,, = 4.644x107¢ N/m? Solar radiation pressure at 1 Earth radius [1:134]
R, = 6378.135km Mean equatorial radius of Earth

Unit Conversions
Source: CRC Tables [4]

lin. = 0.0254m

1 nmi. = 1.15077945 mi.
1mi. = 1.609344 km
11b. = 0.45359237 kg
11b. = 4.448 N
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Appendiz B. Global Positioning System (GPS) Block IIR Modeling Data

Sources for data are indicated in the section headings. Data within a section that were

either derived or taken from other sources are labeled accordingly.

B.1

Mass and Inertia Properties Calculations

Source: [17]

The original mass properties data contained in the GPS Block ITR mass properties

report [17] included detailed identification of spacecraft components, their locations within

the vehicle, and their masses. Thus, foreign export of the document was restricted. How-

ever, the data extracted for use and used in this appendix is neither exactly replicated nor

in sufficient detail to warrant such restrictions.

Figure B.1 represents the fully deployed configuration for the GPS Block IIR vehicle

used in mass properties calculations. The following data were estimated based on source

data:

Vehicle total mass, on-orbit beginning of life: m;,, = 2423.4 b =~ 1099.2 kg

Solar array mass (each): mse = 103.304 [b ~ 46.858 kg
Solar array surface area (each): Ay, = 7.65 m?
Solar array mass/area ratio (derived): 6.125 kg/m?

Moments and products of inertia (in F, frame), relative to spacecraft center of mass,

on-orbit, fully deployed, beginning of life are given as

Iy = 15267 in Ibf s? ~ 1724.9 kg m?
I, = 6924 inlbf s? ~ 78227 kg m?
Iz = 178754n Ibf s* ~ 2019.5 kg m®
I = I=-233inlbf s2 ~ —26.324 kg m?

Iis = Iy=-4inlbfs® =~ —0.45192kgm?
Iy = Ipp=-233inlbfs® ~ -—26.32kgm?
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B.2 Material Properties

Assumed properties for solar pressure modeling are as follows:

Pa
Ps

Pd

0.3 (fraction of incident photons absorbed)

0.4 (fraction of incident photons specularly reflected)

0.3 (fraction of incident photons diffusely reflected)

B.3 Momentum Wheel Assembly Properties Calculations

Sources: [19],[7]

Momentum wheel orientation in vehicle, with respect to body fixed frame F; are given as

(vaz o -va72)"
5 = (0 -v3/2 —ﬁ/Q)T

(~varz o -vap2)’

(0 vz/2 -v2/2)

b
3

Figure B.2 GPS Block IIR Wheel Orientations

B-3

o>




Axial wheel moments of inertia

o4 = 0.075 in Ib s? ~ 0.00847 kg m?

“»
o

il
»

[

Il
S~
w

[l

1

Maximum momentum wheel angular rate: 49000 rpm = 1943 rad/s
Minimum commandable wheel motor torque (derived): +2.768 x 10™* N m

Maximum commandable wheel motor torque (derived): £0.071 N m

B./ Orbital Parameters

Source: [18]

All of the following parameters were assumed constant for modeling simplicity:

a = 26559.91 km (semi-major axis)

e = 0.0039 (eccentricity)

i = 54.28° (inclination)

w = 0.0° (tight ascension of node (assumed value for modeling simplicity))
Q = 7/2 (argument of perigee (assumed value for modeling simplicity))

T, = O0s (time of perigee passage (assumed value for modeling simplicity))




Appendiz C. Hubble Space Telescope Modeling Data

Sources for data are indicated in the section headings. Data within a section that were

either derived or taken from other sources are labeled accordingly.

C.1 Mass and Inertia Properties Calculations

Source: [2]

Figure C.1 represents the fully deployed configuration for the Hubble Space Telescope
vehicle used in mass properties calculations. The following data were obtained from the

source or assumed as indicated:

Vehicle total mass, on-orbit beginning of life: My = 24000 [b =~ 10886 kg
Estimated solar array surface area (each): Az = 16 m?
Assumed solar array mass/area ratio (from Appendix A): 6.125 kg/m?

Estimated solar array mass (derived): Mmse = 6.1252 (A,,) ~ 98 kg

The moments and products of inertia were derived by first calculating the inertia
matrices for each of the four components of the vehicle (small cylinder, large cylinder, two
solar arrays) about their mass centers, calculating the mass center for the entire vehicle,
and then translating each component’s inertia matrix to the vehicle mass center using the

parallel axis theorem as outlined by Likins [16:524-525].

The spacecraft body was modeled as a small right circular cylinder (radius 1.5 m,
height 4 m) adjoined to a large right circular cylinder (radius 2 m, height 5 m), both
of uniform mass distribution. Each solar array was modeled as a thin rectangular plate
(height 8 m, width 2 m, thickness 0.05 m). The solar arrays were assumed to be equal

distance from the 133 axis and in the 132 - 133 plane.
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Given these assumptions, the moments and products of inertia for the composite

spacecraft about the center of mass, expressed in F; are

ill
i22
i33
i1z
Iis

i23

C.2 Material Properties

P

Q

X

79836 kg m?
76634 kg m?
21679 kg m?
In=0
I3y =0

.[32:0

Assumed properties for solar pressure modeling are as follows:

pa = 0.3 (fraction of incident photons absorbed)
ps = 04 (fraction of incident photons specularly reflected)
pa = 03 (fraction of incident photons diffusely reflected)
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C.3 Momentum Wheel Assembly Properties Calculations

Sources: [2],[20]

Momentum wheel orientation in vehicle, with respect to body fixed frame F; (assumed):

o)

(v2/2 o —ﬁ/2)T

(0 -v2/2 —ﬁ/z)T
& = (—V3/2 0 —V3[2)

(o V32 —vaj2)

o)

Figure C.2 Hubble Space Telescope Assumed Wheel Orientations
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Axial wheel moments of inertia

jsl = js? = i33 = ~34 = 0.84 kg mz

Maximum momentum wheel angular rate: +3000 rpm = £314 rad/s
Minimum commandable wheel motor torque (Assumed): 0.2 N m

Maximum commandable wheel motor torque (Assumed): 3.0 x 107* N m

C.4 Orbital Parameters

Source: [20]

All of the following parameters were assumed constant for modeling simplicity:

a = 6993.135 km (semi-major axis)

e = 0.001 (eccentricity)

i = 45° (inclination)

w = 0.0° (right ascension of node (assumed value for modeling simplicity))
Q = 7/2 (argument of perigee (assumed value for modeling simplicity))

T, = 0s (time of perigee passage (assumed value for modeling simplicity))
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Appendiz D. MATLAB Code Listings

The following programs were developed by the author from January-November 1995.
They are MATLABTM script files, and along with the standard MATLABTM library rou-
tines, provide full functionality for all simulations conducted in this report. The programs
were Tun on a Sun SPARCstation 20 workstation under Sun Operating System ver. 4.1 or
later and MATLABTM ver. 4.2¢c.

Figure D.1 portrays the functional flow of data within the programs.

START

rotor_m.m

Load s/c data, orbit parameters dat_gps.n
and simulation control parameters or
dat_hub.m

Calculate wheel torque control

rotor_el.m
Integrate equations of motion, or

rotor_e2.m

attitude equations, torque equations or
rotor_e2_per.m

C ell pltO0.m
Plot results or
__/\ ell pltl.m

END

Figure D.1 Simulation Program Functional Flow Diagram
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D.1 GPS Block IIR Data Definition File

VA AN AR AN RN AR YA S YA A A YA AN Y AN AN AN

2 Wk W%

3 WA dat_gps.m AN

4 %W WA

5 W% Capt Greg Schultz, GA-95D Wik

6 Wi WAk

(A revision WA

8 W mmmmmmmemme- Wk

9 Wi 11.03.95.0830 AN

10 WA Wk

R A YA AN AN A RSN NN AN AN A Y Y YA YA A A Y AN A YA

12 %

13 4% This generates parameters for the

14 3 momentum wheel vehicle simulation

15 % run in file rotor_m.m for the GPS

16 % Block IIR spacecraft

17

18 UUUUAI IR RAAD DDA DADRAADRLDDDRRRIDD DD DADD DD

19 YYY%%%  SIMULATION CONTROL PARAMETERS %44
20 WA I AR DI IR RRAAIND DDA RND DDA AADD DD
21
22 satmod=1; % Satellite model to use for 3-D plots (1=GPS, 2=Hubble)
23 pltfigl=1; % Turn momentum ellipsoid plots on/off (1/0)
24 ellflg=1; % Select momentum ellipsoid plotting method and resolution
25 inc0=.01; Y% O=achievable regions of ellipsoid, point-by-point (slow)
26 inc1=3; % 1=entire ellipsoid, parameterized method (fast)
27 pltflg2=1; % Turn dimen. momenta, ang. veloc. plots on/off (1/0)
28 pltflg3=0; % Turn non-dimen. momenta, ang. veloc. plots on/off (1/0)
29 pltflgé=1; % Turn 3-D attitude plots on/off (1/0)
30 pertflg=0; % Turn grav. grad. and solar press. torques on/off (1/0)
31 % O =none 1 =sol. press. only 2 =sol. press. and grav.
32 small=0.1; % Value of small parameter on torques. Should be (+)
33 r=1; % Momentum wheels to use
34 % 0= (1/2/3), 1 = (1/2/4), 2 = (1/3/4), 3 = (2/3/4)
35 ph_o=0; % Initial Euler angle phi about e3 axis (deg)
36 th_o=0; % Initial Euler angle theta about el axis (deg)
37 ps._o=0; % Initial Euler angle psi about e3 axis (deg)
38 )
39 ph_f=45; % Final Euler angle phi about e3 axis (deg)
40 th_f=45; % Final Euler angle theta about el axis (deg)
41 ps_£f=0; %, Final Euler angle psi about e3 axis (deg)
42 ]
43 h_o=5; % Magnitude of vehicle ang. momentum (constant) [kg m~2/s]
44 % used to dimensionalize results. Note that since vehicle
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45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
€66
67
68
69
70
71
72
73
74
75
76
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% ang. veloc. "0, larger h_O <--> higher rotor momenta;
mu_o=[1 0 0]; % Initial non-dimen. rotor momenta (stationary platform)

% format: mu_o=[mul mu2 mu3]

% use mu_o=-99 to generate random point

ths0=135; % Initial sun vector angle from el (CCW, in degrees)
traj=2; % Wheel torque trajectory
% (1=direct 2=suboptimal)
t0=0; % Start time for integration (sec).
t£=-999; % Stop time for integration (sec). Use -999 for autocalc.
% NOTE: non-dimen. values calculated below s/c properties
num=2; % desired number of 3-D attitude plots for this time span

h
h

AN AN AN SN AN NSNS AN AN YA YA AN A AN
YANAN SPACECRAFT PHYSICAL PROPERTIES WARA
AN AN NN N AN SN AN A AN A A A

%

% Inertia, Mass, and coordinate frame data obtained from Navstar GPS
% Block IIR Phase II Mass Properties Report, 9 Mar 95

h

al=[sqrt(2)/2; 0;

a2=[0; -sqrt(2)/2;

a3=[-sqrt(2)/2; 0;

ad=[0; sqrt(2)/2;

Is1=.00847;

Is2=.00847;

Is3=.00847;

Is4=.00847;

ws 1max=9000%2%pi/60;

ws2max=9000%2*pi/60;

ws3max=9000%2%pi/60;

ws4max=9000%2%pi/60;

h

I=[ 15267 -233 -4;
-233 6924 -46;

-4 -46  17875];

I=(.0254)%(4.448)*1;

Ic=trace(I);

-sqrt(2)/2]; % wheel orientation w.r.t

-sqrt(2)/2]; % body fixed frame b (and XYZ)

-sqrt(2)/2];
-sqrt(2)/2];
% Axial moments of inertia of the
% 4 momentum wheels (kg*m~2)

% Maximum wheel angular speed magnitudes (rad/s)

% GPS Blk IIR on-orbit inertia tensor,

% relative to mass center in XYZ frame

% units are  inx*lb*sec”2

%

% Convert from inx*lb*sec™2 to kgxm™2

% (.0254 m/in) (4.448 N/1b) (in*1lb*sec~2)=

% Nxm¥sec™2 = (kg*m/sec”2)*m*sec”2=kgim~2

h

% Charact. inertia for non-dimensionalizing
% (note: this is frame invariant)

% Non dimensionalized inertia matrix
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91

92
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94

85
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99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

%

Is_d=eye(3); % Create diagonal matrix template;
Is_d(1,1)=Is1; % Default Configuration (r=0);
Is_d(2,2)=Is2;

Is_d(3,3)=1s3;

if r==1 % Fill remaining diagonal entries of Is
Is_d(3,3)=Is4; Y Based on choice of wheel combination.
elseif r==

Is_d(2,2)=Is3;
Is_d(3,3)=Is4;
elseif r==
Is_d(1,1)=Is2;
Is_d(2,2)=Is3;
Is_d(3,3)=Is4;
end;
h
Is=Is_d./Ic; % Non dimensionalized inertia of wheels
[/
% Now define vectors from vehicle c.m. to component centers
% of pressure for solar pressure modeling (m), the effective areas (m~2)
% and the surface normal vectors (all in Fb)

[/

rs(1,:)=[1 0 0]; % +bl face
rs(2,:)=[-1 0 0]; % -b1l face
rs(3,:)=[0 1 0]; % +b2 face
rs(4,:)=[0 -1 0]; % -b2 face
rs(5,:)=[0 0 -1]; % -b3 face
rs(6,:)=[0 0 1]; % +b3 face

rs(7,:)=[0 3.5 .37]; % +b2 solar array FRONT
rs(8,:)=[0 -3.5 .37]; % -b2 solar array FRONT
rs(9,:)=[0 3.5 .37]; % +b2 solar array BACK
rs(10,:)=[0,-3.5 .37]; J -b2 solar array BACK
As(1)=4.424;

As(2)=4.424;

As(3)=4.424;

As(4)=4.424;

As(5)=2.4964;

As(6)=2.4964;

As(7)=T7.65;

As(8)=7.65;

As(9)=7.65;

As(10)=7.65;

ns(1,:)=[1 0 0];

ns(2,:)=[-1 0 0];

ns(3,:)=[0 1 0];
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157
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ns(4,:)=[0 -1 0];

ns(5,:)=[0 0 -1];

ns(6,:)=[0 0 1];

ns(7,:)=[1 0 0];

ns(8,:)=[1 0 0];

ns(9,:)=[-1 0 0];

ns(10,:)=[-1 0 0];

%

VAN NN A AN NN AN AN SN YA AN A YA NS AN YA AN YA A AR
WAAAA ORBITAL PARAMETERS Yy
A AN AN AN YA AN AN AN Y YA AN Y AN
%

% Note: right ascension of the node is assumed to be O,

% and the argument of perigee is assumed to be pi/2
h

sma=26559.91; % Semi-major axis (km)
ecc=0.0039; % Eccentricity
incl=deg2rad(54.28); % Inclination (degrees)

l/.

AN AN NSNS YA NN N AN YA A YA A A YA AN YA A

AAAA NON-DIMENSIONALIZE TIMES YANAA)

VYA AN A AN AN YA A N A AN YA A Y AN YA YA A

%

% This is necessary for equation consistency for integration
% Must be done here since Ic needed from above

%

t0=h_o*t0/Ic;

if tf>0, tf=h_oxtf/Ic; end; % don’t recalculate if tf=-999
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D.2

O 00 N O 0 WN =

WD D B DWW W WWWWWWWNNDNDNDRNDNDNDNDDMNNER R P B 2 B R
B W N OO OO N D WN PO WOOWNOOOMTE WNE OOWOO~NOOTOEd WN O

Hubble Space Telescope Data Definition File
A AN AN A AN ANy YA A Y Y YN AN A YA YA YA AN AN

W

Wk

%A% dat_hub.m AN
WA WA
AN Capt Greg Schultz, GA-95D %%%
W W%
AN revision AN
WL mmmemmemeems WA
AN 11.02.95.1130 YAAA
WA WA
WIR DD TIAD DI RA DD ITRAD D DARAA R RDARAA DD DARD DD AANDT
h

% This generates parameters for the

% 3 momentum wheel vehicle simulation

% run in file rotor_m.m for the

% Hubble Space Telescope spacecraft

%

AN AN AN AN AN A NSNS AN A YA AN AN YA
AAAAA SIMULATION CONTROL PARAMETERS YA
WA AN AN AN AN AN AN A AN NN A A NS YA A A A

[/
satmod=2;
pltflgl=0;
ellflg=1;
inc0=.05;
inc1=3;
pltflg2=0;
pltflg3=0;
pltflgé=1;
pertflg=1;

small=.5;
r=0;

ph_o=0;
th_o=0;
ps_o=0;

ph_£=0;
th_£=90;
ps_£=0;

h_0=200;

Satellite model to use for 3-D plots (1=GPS, 2=Hubble)

Turn momentum ellipsoid plots on/off (1/0)

Select momentum ellipsoid plotting method and resolution
O=achievable regions of ellipsoid, point-by-point (slow)
i=entire ellipsoid, parameterized method (fast)

Turn dimen. momenta, ang. veloc. plots on/off (1/0)

Turn non-dimen. momenta, ang. vel. plots on/off (1/0)

Turn 3-D attitude plots on/off (1/0)

Turn grav. grad. and sol. press. torques on/off
0 =none 1 =sol. press. only 2 =sol. press. and grav.

Value of small parameter on torques. Should be (+)

Momentum wheel triads to use
0= (1/2/3), 1 = (1/2/4), 2 = (1/3/4), 3 = (2/3/4)

Initial Euler angle phi about e3 axis (deg)

Initial Euler angle theta about el axis (deg)

Initial Euler angle psi about e3 axis (deg)

Final Euler angle phi about e3 axis (deg)
Final Euler angle theta about el axis (deg)

Final Euler angle psi about e3 axis (deg)

Magnitude of vehicle ang. momentum (constant) [kg*m~2/s]
used to dimensionalize results. Note that since vehicle

D-6




45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

% ang. vel. are "0, larger h_0 <--> higher rotor momenta;

mi_o=[{1 0 0]; Y%

Initial non-dimen. rotor momenta (stationary platform)
% format: mu_o=[mul mu2 mu3]

% use mu_o=-99 to generate random point

ths0=135; h
traj=2; %

t0=0;
tf=-999; A

num=20;
%
%

Initial sun vector angle from el (CCW, in degrees)
Wheel torque trajectory
% (i1=direct 2=suboptimal)

-999 for autocalc.

% Start time for integration (sec). Use
Stop time for integration (sec). Use
% NOTE: non-dimen. values calc. below
% desired number of 3-D attitude plots

AN A YA YA YAy AN Y Ay Y AN Y A YA AN YA YA A YA

WAAAA

SPACECRAFT PHYSICAL PROPERTIES

AR

ANy A YA YA YA NNy Y Y Y A Y YA Y A A YA

%

% The Hubble Space Telescope is modeled as two right circular cylinders

% of uniform density, with two rectangular parallelepiped
% solar arrays at equal distances from s.c. c.m.

% there are four axisymmetric momentum wheels

%

%

al=[sqrt(2)/2; 0;
a2=[0; -sqrt(2)/2;
a3=[-sqrt(2)/2; 0;
a4=[0; sqrt(2)/2;
Is1=.84;

1s2=.84;

Is3=.84;

Is4=.84;

ws 1max=3000%2%pi/60;
ws2max=3000%2%pi/60;
ws3max=3000*2%pi/60;
ws4max=3000%2%pi/60;
m_tot=24000/2.204622622;
r_sm=1.5;

h_sm=4;

r_1g=2;

h_lg=5;

h_sa=8;

w_sa=2;

d_sa=.05;

rho_d=.3;

tho_s=.4;

-sqrt(2)/2];

-sqrt(2)/2];
-sqrt(2)/2];
-sqrt(2)/2];

)

Max. wheel ang. speed magnitudes (rad/s)

[/
[/

HST total

Radius
Height
Radius
Height
Height

of
of
of
of
of

% wheel orientation w.r.t

% body fixed frame b )

Axial moments of inertia of the
4 momentum wheels (kg*m~2)

mass (1b)
small cylinder
small cylinder
large cylinder (m)
large cylinder (m)
each solar array (m)

(m)
(m)

Width of each solar array (m)
Thickness of each solar array (m)

Spacecraft surface diffuse reflectivity
Spacecraft surface specular reflectivity

-999 for autocalc.
s/c properties
for this time span




90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

[/

gps_sa_m2a=6.125; %
m_sa=h_sa*w_sa*gps_sa_m2a; %
m_sc=m_tot-2*m_sa; h
vol_sm=pi*r_sm~2%h_sm; %
vol_lg=pi*r_lg~2%h_1g; %
frac_sm=vol_sm/(vol_sm+vol_1lg);
m_sm=frac_sm*m_sc; %
m_lg=m_sc-m_sm; h

h

d=[m_sm m_1lg 2*m_sa; 1 -1 0; 0 -1
Rsm=[0 0 d(1)]; %
R_1g=[0 0 d(]; %
R_s1=[0 4 d(3)]; h
R_s2=[0 -4 d(3)];

h

I_sm=eye(3); %
I_sm(1,1)=(3%r_sm~2+h_sm"~2)/12; %
I_sm(2,2)=I_sm(1,1); %

I_sm(3,3)=r_sm~2/2;
I_sm=m_sm*I_sm;

[

I_1g=eye(3); %
I_1g(1,1)=(3*r_1g~2+h_1g"~2)/12; '
I_1g(2,2)=I_1g(1,1); %

I_1g(3,3)=r_1g°2/2;
I_1g=m_lgxI_lg;

%

I_sa=eye(3);
I_sa(i,1)=(h_sa"2+w_sa"~2)/12; Y%
I_sa(2,2)=(h_sa"2+d_sa~2)/12; %
I_sa(3,3)=(d_sa"2+w_sa"~2)/12; %
I_sa=m_sa*I_sa;

[

R_smx=[ 0 -R_sm(3) R_sm(2); %
R_sm(3) 0 -R_sm(1); %
-R_sm(2) R_sm(1) 0];
R_1gx=[ 0 -R_1g(3) R_.1g(2); h
R_1g(3) 0 -R_1g(1); %
-R_1g(2) R_1g(1) 0];
R_s1x=[ 0 -R_s1(3) R_s1(2); A
R_s1(3) 0 -R_s1(1); %
-R_s1(2) R_s1(1) 0];
R_s2x=[ 0 -R_s2(3) R_s2(2); %
R_s2(3) 0 -R_s2(1); h

GPS IIR solar array mass/area ratio
Mass of each HST solar array (kg)

Mass of HST without solar arrays (kg)
Volume of small cylinder (m~3)

Volume of large cylinder (m~3)

Fraction of total volume from small cyl.
Mass of small cylinder (kg)

Mass of large cylinder (kg)

1]\ [0; (h_sm+h_1g)/2;h_1g/2];

Vectors (in b frame) from system c.m.
to small and large cylinder c.m. (m)
and solar array c.m.

Inertia matrix for small cylinder about
center of mass, expressed in b frame
(kg*m~2)

Inertia matrix for large cylinder about
center of mass, expressed in b frame
(kg*m~2)

Inertia matrix for solar array about
center of mass, expressed in b frame
(kg*m~2)

Skew symmetrix matrix for translating
I_sm to system c.m.

Skew symmetrix matrix for translating
I_lg to system c.m.

Skew symmetrix matrix for translating
I_sal to system c.m.

Skew symmetrix matrix for translating
I_sa2 to system c.m.




135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
168
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

-R_s2(2) R_s2(1) 0];

I_sm_c=I_sm-m_sm*R_smx*R_smx; % Translate inertia matricesto system

I_lg_c=I_lg-m_lg*R_lgx*R_1gx; ' center of mass, in b frame

I_sal_c=I_sa-m_sa*R_six*R_six;

I_sa2_c=I_sa-m_sa*R_s2x*R_s2x;

I=I_sm_c+I_lg_c+I_sal_c+I_sa2_c; % Construct total inertia matrix about
% c.m. in b frame

Ic=trace(I); % Charac. inertia for non-dimensionalizing
% (note: this is frame invariant)

I_d=I1; % dimensional inertia matrix
I=I./Ic; % Non dimensionalized inertia matrix
%

Is_d=eye(3); i Create diagonal matrix template;
Is_d(1,1)=Is1; % Default Configuration (r=0);

Is_d(2,2)=Is2;
Is_d(3,3)=Is3;

if r== % Fill remaining diagonal entries of Is
Is.d(3,3)=Is4; % Based on choice of wheel combination.
elseif r==

Is_d(2,2)=1s3;
Is_d(3,3)=Is4;
elseif r==
Is_d(1,1)=Is2;
Is_d(2,2)=Is3;
Is_d(3,3)=Is4;
end;
h
Is=Is_d./Ic; % Non dimensionalized inertia of wheels
h
% Now define vectors from vehicle c.m. to component centers
%, of pressure for solar pressure modeling (m), the effective areas (m~2)
% and the surface normal vectors (all in Fb)

h
rs(1,:)=[0 0 0]; % small cylinder. Dummy value, calc. during integr.
rs(2,:)=[0 0 0]; % large cylinder. Dummy value, calc. during integr.

rs(3,:)=R_sm+[0 O h_sm/2]; J small cylinder top
rs(4,:)=R_1g+[0 0 -h_1g/2]; ' large cylinder bottom

rs(5,:)=R_s1; % +b2 solar array FRONT
rs(6,:)=R_s2; % -b2 solar array FRONT
rs(7,:)=R_sl; % +b2 solar array BACK
rs(8,:)=R_s2; % -b2 solar array BACK
rs(9,:)=[0 0 0]; % dummy value, no 9th surface
rs(10,:)=[0 0 0]; % dummy value, no 10th surface

As(1)=2%r_sm¥h_sm;
As(2)=2*r_lg*h_lg;




180 As(3)=pi*r_sm"~2;

181 As(4)=pi*r_1g~2;

182 As(5)=h_sax*w_sa;

183 As(6)=h_sa*w_sa;

184 As(7)=h_sa*w_sa;

185 As(8)=h_sa*w_sa;

186 As(9)=0;

187 4s(10)=0;

188 ns(1,:)=[0 0 0]; % small cylinder. Dummy value, calc. during integration
189 mns(2,:)=[0 0 0]; % large cylinder. Dummy value, calc. during integration
190 ns(3,:)=[0 0 1];

191 ns(4,:)=[0 0 -1];

192 ns(5,:)=[1 0 0];

193 ns(6,:)=[1 0 0];

194 ns(7,:)=[-1 0 0];

195 ns(8,:)=[-1 0 0];

196 ns(9,:)=[0 0 0];

197 ns(10,:)=[0 0 0];

198 %

199 %

200 WARUAARARDRAI DD AR DD ARDDAADA AN DARD AR AAD AN RN

201 WAANA ORBITAL PARAMETERS WA

202 UURARUARARAAA AR DN DN DN ARR DA RDARARRA AR RD DA DD

203 %

204 Y Note: right ascension of the node is assumed to be O,
205 % and the argument of perigee is assumed to be pi/2
206 Y%

207 sma=6993.135; % Semi-major axis (km)
208 ecc=0.001; % Eccentricity

209 incl=deg2rad(45); % Inclination (degrees)
210 %

211 %

212 UUNAARRARARARARD LD AARARD AR DD AAARAAAAR DD DAR DDA

213 WA NON-DIMENSIONALIZE TIMES YAAAAS

214 UURARRRARARDRAAAD DRI DR DDA RADAARDD AN DDA

215 %

216 Y This is necessary for equation consistency for integration
217 % Must be done here since Ic needed from above

218

219 t0=h_o*t0/Ic;

220 if tf>0, tf=h_oxtf/Ic; end; % don’t recalculate if tf=-999
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D.3 Main Simulation Program

O A A A A A AN AN AN A AN AN AN

2 W WA

3 WA rotor_m.m AN

4 W WA%

5 WA Capt Greg Schultz, GA-95D WA

6 W% W%

T W% revision YANA

8 W mmmmmmemeee- 144

9 Wik 11.02.95.1230 Whh

10 W% WA

R Yy N N YN Y YN YYY Y YN

12 4

13 clear;

14 format short e; % display format

15 global I_d Ic Is_.d h_o JI small; 7’ Define global variables used
16 global A B alal ala2 a2a2; % here and in subroutines

17 global mu_o mu_f Rgmu Rdmu;

18 global r direct wsmax ellflg GM;

19 global rho_d rho_s;

20 global rs ns As r_sm r_lg R_sm R_1lg satmod pertflg;

21 %

22 File=input(’Data file (in single quotes w/o .m extension, e.g. dat_def):’);
23 %

24 eval(File); % Execute file to load data for simulation
25

26 ‘attpos=[0 25 1200 900]; % Use this for presentations

27 attpos=[0 100 700 700]; % [Xo Yo Xwidth Ywidth] pixels

28

29 if r== % Calculate A and wsmax based on wheels
30 A=[al a2 a3]; % selected to use in simulation
31 wsmax=[wsimax ws2max ws3max];

32 elseif r==

33 A=[al a2 a4];

34 wsmax=[wsimax ws2max wsdmax] ;

356 elseif r==

36 A=[al a3 a4];

37 wsmax=[wsimax ws3max ws4max];

38 elseif r==

39 A=[a2 a3 a4];

40 wsmax=[ws2max ws3max ws4max];

41 end;

42 ail=A(:,1); a2=A(:,2); a3=A(:,3); % redefine al..a3 for subsequent calcs.
43

44 if rank(A)<3
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82
83
84
85
86
87
88
89

’ Wheel unit vectors do not form a basis - modify data input file’
break;
end;
v
WA RRAR AR ARDDDDRRDADRRDARARADDAR DDA RRDDDAAND
YANAAA SPECIFY INITIAL AND FINAL CONDITIONS WARK
A AN AN Ay YA AN YA AN YA YA A
h
% Convert initial, final Euler angles to radians
h
ph_o=deg2rad(ph_o); th_o=deg2rad(th_o); ps_o=deg2rad(ps_.o);
ph_f=deg2rad(ph_f); th_f=deg2rad(th_f); ps_f=deg2rad(ps_f);
h
% Obtain rotation matrices Ro, Rf relating initial, desired final
% position of body frame to inertial.
h
Ro=rot3(ps_o)*rotl1(th_o)*rot3(ph_o); % xo|b=Ro*xo|i
Rf=rot3(ps_f)*rot1(th_f)*rot3(ph_£f); % xflb=Rf*xf|i
h
% calculate initial Euler axis (lambda) and rotation angle (m)
h
[eigvec,eigval]l=eig(Ro);
if abs(i-eigval(1,1))<=.001
lambda=eigvec(:,1);
m=angle(eigval(2,2));
elseif abs(l-eigval(2,2))<=.001
lambda=eigvec(:,2);
m=angle(eigval(1,1));
elseif abs(1l-eigval(3,3))<=.001
lambda=eigvec(:,3);
m=angle(eigval(1,1));
else
error (’CANNOT FIND EULER AXIS - No eigenvalue close to 1’)
end;
m=abs (m) ; % take pos. rotations about euler axis
h
ql0=lambda(1)*sin(m/2); % calculate initial quaternions
q20=1lambda(2)*sin(m/2) ;
q30=lambda(3)*sin(m/2) ;
q40=cos(m/2) ;
q0=[q10 q20 q30 q40];
%
if mu_o==-99 % generate random mu_o if desired
xx=rand(size(1:3));
x_o=xx/norm(xx) ;
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90 mu_o=inv(A)*x_o’;

91 end;

92 %

93 if size(mu_o,1)==1, mu_o=mu_o’; end;

94

95 mu_f=inv(A)*Rf*Ro’*A*mu_o; % calc. mu_f based on init., desired
96 % final orientations

97 %

98 x_o=A*mu_o;

99 x_f=Axmu_f;

100 ’Dimensionless s/c ang. mom. (stationary platform) boundary conditions are:’
101 x_o

102 x_f

103 ’Dimensionless wheel ang. mom. (stationary platform) boundary conditions are:’
104 mu_o

105 mu_f

106 ’Initial wheel angular velocities (rad/sec):’

107 wso=inv(Is*Ic)*h_o*mu_o

108 Y%
109 J=I-A*Is*A’; JI=inv(J);
110 %

111 Y% Calculate initial orbital position, velocity
112 Y% (assuming right ascension=0, arg per=pi/2)

113 %,

114 if pertflg>0

115 GM=398601.2; % Gravitational parameter
116 rper=sma*(1-ecc); % Radius of perigee

117 enr=-GM/(2%sma) ; % Orbital energy

118 Rorb0=[0 rper*cos(incl) rper*sin(incl)]; ’ Initial orbital position
119 Vorb0=[- (2% (enr+GM/rper))~.5 0 0]; % Initial orbital velocity
120 TP=2%pi*(sma~1.5)/(GM"~.5);

121 end;

122

123 thsO=deg2rad(ths0); % convert initial sun angle to rad

124

125 YWARA AR LA DAL AR A AR DAL ARDA AR AR DA N AR AR AAADN
126  %%%%Y% CALCULATE DIRECT WHEEL TORQUE CONTROL %AAA%
127 WAL AR DA RN DLDA DA RDN AR BDRD AR AADAD

128

129 if traj==

130 direct=small*((mu_f-mu_o)/(norm(mu_£f-mu_o)));

131 if t£==-999

132 tf=(norm(mu_f-mu_o))/small; % auto-calculate final time for
133 end; % desired final condition mu_f
134 end;
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135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

[/
AN A AN A YAy N YA A A YAy A YAy A YA YA YA YA YA A YY)
%%% CALCULATE SUBOPTIMAL WHEEL TORQUE CONTROL %AA%A%
AR Ay AN A S YNy YAy Ay AN YA Y YA A YA A AN A
h
% define new gi frame in which origin, mu_o, mu_f lie in gi-g2 plane
% this is a suboptimal trajectory NEAR to the '"great circle"
% trajectory on a sphere. Approximation is best when ellipsoid is
% nearly spherical (rotors nearly orthogonal).
% Only limitation is must have non-zero cross prod. between mu_o and mu_f
[/
if traj==
gl=mu_o/norm(mu_o) ;
g3=cross(mu_o,mu_f)/(norm(cross(mu_o,mu_£)));
g2=cross(g3,g1) /norm(cross(g3,gl));
Rgmu=[g1 g2 g3]; % rot. matrix from g to "mu" frame
AG=A*Rgmu;
agl=AG(:,1); ag2=AG(:,2); ag3=AG(:,3);
alal=agl’*agl; a2a2=ag2’*ag2; ala2=agl’*ag?2;
B=[ala2 a2a2 0;-alal -ala2 0;0 0 0]; % Wheel torque in "nu" frame
h
% auto-calculate final time for desired final condition mu_f

[/

if tf==-999
Bi=[ala2 a2a2;-alal -ala2]; % Two rotor torque law in gi frame
nu_f=Rgmu’*mu_f; % rotor momenta in gi frame
nu_f=nu_f(1:2); % in gi frame, nu_f(3)=0 anyway

[vi,d1]=eig(B1);
Pbi=[real(vi(:,1)) imag(vi(:,1))];
wi=imag(d1(1,1));
ab1=Pbi\[1;0];
aal=ab1(1); bil=abi(2);
vvi=Pbil\nu_f;
vii=vvi(1); vi2=vvi(2);
tf=atan2(bi*vil-aal*vi2, aal*vii+bil*v12)/(wiksmall);
if t£<0, tf=-tf; end;
end;
end;
%
NS SR AN AN AN NN NN AN YNy Y SN AN A AN Y YA AN
YANAA) INTEGRATE EQUATIONS OF MOTION YAAAAA
NN AN AN NN NSNS AN YAy Y YN A NS AR AN AN YT YA AN
%
t0_d=Ic*t0/h_o; % dimensionalize integration times
tf_d=Ic*tf/h_o;
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180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

’integration time (sec):’
t0_d

tf_d

%

if pertflg>01

’Number of orbital periods spanned by this maneuver : ’

tf_d/TP
end;
% unperturbed RHS file, tolerances, i.c.s
if pertflg==

if traj==1, File=’rotor_el’;

elseif traj==2, File=’rotor_e2’;
end;
tol=1e-10

statesO=[x_o’> mu_o’ q0];
[t,states]=ode45(File,t0,tf,states0,t0l,0);

end;
% perturbed RHS file, tolerances, i.c.s
if pertflg>0
if traj==1, File=’rotor_el_per’;
elseif traj==2, File=’rotor_e2_per’;
end;
tol=1e-10

statesO=[x_o’ mu_o’ qO0 thsO Rorb0 VorbO];
[t,states]=ode45(File,t0,tf,states0,to0l,0);

end;

h

% integration is now done, so let’s redefine returned

% state variables with more recognizable names

h

% These are returned for both perturbed and unperturbed system

h

x1 =states(:,1); x2=states(:,2); x3=states(:,3); x=[x1 x2 x3];

mui=states(:,4); mu2=states(:,5); mu3=states(:,6); mu=[mul mu2 mu3];

ql =states(:,7); q2=states(:,8); q3=states(:,9); g4=states(:,10);

%

% These only returned if perturbations turned on

h

if pertflg>0
ths=[states(:,11)]; ' sun vector angle from el in Fi
Rorb=[states(:,12) states(:,13) states(:,14)]; % Orb position in Fi
Vorb=[states(:,15) states(:,16) states(:,17)]; % Orb velocity in Fi

end;

h

Ri11=q1.72-q2.72-q3.72+q4.72; % Calculate rotation matrix
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225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
2562
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

R12=2*(ql.*q2+q3.*q4); % relating body axes to inertial

R13=2*(q1.*q3~q2.*q4); % for each time step
R21=2%(ql.*q2-q3.%q4) ; h (xlb)=R(x|i)
R22=-ql1.72+q2.72-q3.72+94.72; =R3(psi)R1(theta)R3(phi) (xli)

R23=2%(ql.*q4+q2.*q3);
R31=2%(ql.*q3+q2.*q4);
R32=2%(-ql.*q4+q2.*q3);
R33=-ql."2-q2.~2+q3. 2+q4."2;

h
%
bi=[R11 R12 R13]; % Now we can calculate body axis vectors
b2=[R21 R22 R23]; % vs. time (expressd in Fi). These should
b3=[R31 R32 R33]; % be orthogonal and of unit length
)
h
stln=size(R11,1); % Length of state vector
./. .
Rfin=[Ri1(stln) Ri2(stln) R13(stln); % final transf. matrix
R21(stln) R22(stln) R23(stln);
R31(stln) R32(stln) R33(stln)];
1)
h
sun=[cos(ths) sin(ths) Oxths]; % sun vector in Fi
t_d=Ic*t/h_o; % time (sec)
h_di=h_ox*x1; h_d2=h_o*x2; h_d3=h_o*x3; % platform ang. mom. (N¥m*s)
ha_di=h_o*mul; ha_d2=h_o*mu2; ha_d3=h_o*mu3; % wheel ang. mom. (N*m*s)
ws_di=ha_d1/Is_d(1,1); % wheel speed (rad/sec)

ws_d2=ha_d2/1s_d(2,2);
ws_d3=ha_d3/1s_d(3,3);
L)
%

w=JI*(x’-A*xmu’); % Calc. platform non-dim. angular velocities (body frame)

w_d=h_o*w/Ic; % Calc. dimensional platform ang. vel. (rad/sec) (body frame)
Hp=I*w; Hp=Hp’; % Calc. platform non-dim. momentum (body frame)

Hr=mu*A’; % Calc. rotor non-dim. momentum (body frame)

Htot=Hp+Hr; % Vehicle total non-dim. ang. momentum (body frame)

for ii=1:stln % Vehicle total non-dim. ang. momentum (inertial frame)

% x’|i=x’|b*R313
xi(ii,:)=x(ii,:)*[R11(ii) R12(ii) R13(ii);
R21(ii) R22(ii) R23(ii);
R31(ii) R32(ii) R33(ii)];

end;

h

for ii=1:stln % Mag. of total ang. momentum (should be const.)
Hmag(ii)=norm(Htot(ii,:));

end;

[/
% check quaternions for errors noting that q172+q272+q372+q472=1
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270

271 qg=ql.72+q2.72+q3.72+q4.72;

272 ’Variation in quaternions =’

273 qvar=abs(max(qq)-min(qq))

274 Y,

275 ‘’Variance of magnitude of total angular momentum =’
276 Hmag_var=max(Hmag)-min(Hmag)

277

278 ’Maximum wheel angular velocities (rad/s) =’

279 ws_d1_max=max(abs(ws_d1))

280 ws_d2_max=max(abs(ws_d2))

281 ws_d3_max=max(abs(ws_d3))

282

283 ’Maximum vehicle angular velocity (rad/sec) =’
284 w_max=max(max(abs(w_d)))

285

286 ’Final spacecraft angular velocities (rad/sec) =’
287 w._d(:,stln)’

288

289 ’Final Euler angles (deg) =’

290 %

291 phi_f=rad2deg(atan2(Rfin(3,1),-Rfin(3,2))) % Final Euler angles
292 theta_f=rad2deg(real(acos(Rfin(3,3))))

293 psi_f=rad2deg(atan2(Rfin(1,3),Rfin(2,3)))

294 Y,
295 WARAANAAAAR DDA AR RN R AR RDRRARARD NIRRT
296  WAAAA PLOT RESULTS OF INTEGRATION YARNY

297 WhRAAARRRR AR DDA DDA RDDARDRRAD LR ARRD NN A D
298

299 ' plot momentum ellipsoid if desired

300 %

301 if pltflgl==

302 if ellflg==

303 ell_plto(al,a2,a3,-2,2,-2,2,inc0);
304 elseif ellflg==

305 ell_plti(al,a2,a3,incl);

306 end;

307 figure(1);
308 hold on;

309 plot3(mu_o(1),mu_o(2),mu_o(3),’wo’);
310 plot3(mu_f(1),mu_£(2) ,mu_£(3),’wx’);
311 plot3(mul,mu2,mu3,’w-’);

312 hold off;
313 figure(2);
314 hold on;
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315 plot3(x_o(1),x_0(2),x_0(3),’w0’);
316 plot3(x_f(1),x_£(2),x_£(3),’wx’);
317 plot3(x1,x2,x3,’w-");

318 hold off;

319 end;

320 Y%

321 Y% Plot dimensional momenta and angular velocities if desired
322

323 if pltflg2==1

324 figure;

325 plot(t_d,h_di,’w-’,t_d,h_d2,’w-.’,t_d,h_d3,’w:’);
326 legend(’hl’,’h2’,’h3’);

327 title(’Spacecraft Angular Momentum vs. time’);

328 xlabel(’Time (seconds)’); ylabel(’h (kg*m~2/s)’);
329 figure;

330 plot(t_d,ha_di,’w-’,t_d,ha_d2,’w-.’,t_d,ha_ds,’wz’);
331 legend(’hai’,’ha2’,’ha3’);

332 title(’Wheel Angular Momentum vs. time’);

333 xlabel(’Time (seconds)’); ylabel(’ha (kg*m~2/s)’);
334 figure;

335 plot(t_d,h_oxHmag) ;

336 title(’Total Angular Momentum Magnitude vs. time’);
337 xlabel(’Time (seconds)’); ylabel(’|h|’);

338 figure;

339 plot(t_d,ws_dl,’w-’,t_d,ws_d2,’w-.’,t_d,ws_d3,’w:’);
340 legend(’wsi’,’WSZ’,’WSS’);

341 title(’Wheel angular velocities vs. time’);

342 xlabel(’Time (seconds)’); ylabel(’ws (rad/sec)’);
343 figure;

344 plot(t_d,w_d(1,:),’w-?,t_d,w.d(2,:),’b-.",t_d,w_d(3,:),’r:’);
345 legend(’wl’,’w2’,’w3’);

346 title(’Spacecraft angular velocities vs. time’);

347 xlabel(’Time (seconds)’); ylabel(’w (rad/sec)’);

348 end;

349 %

350 Y% Plot non-dimensional momenta and angular velocities if desired
351

352 if pltflg3==

353 figure;

354 plot(t,x1,’w-?,t,x2,’w~-.7,t,x3,’w:’);

355 legend(’x1’,°x2°,°x3’);

356 title(’Dimensionless Total Angular Momentum vs. time (in Fb)’);
357 xlabel(’Time (non-dimensional)’); ylabel(’x’);

358 figure;

359 plot(t,mui,’w-’,t,mu2,’w-.’ ,t,mu3,’w:’);

D-18




360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

e
h
h
h

i

legend(’mui’,’mu2’,’mu3’);
title(’Dimensionless Wheel Angular Momentum vs. time’);
xlabel(’Time’); ylabel(’mu’);
figure;
plot(t_d,xi(:,1),’w-?,t_d,xi(:,2),’w-.7,t_d,xi(:,3),’w:");
legend(’xil’,’xi2’,’xi3’);
title(’Dimensionless Total Ang. Mom. Components vs. Time (in Fi)’);
xlabel(’Time (seconds)’); ylabel(’xi’);
figure;
plot(t,Hmag) ;
title(’Dimensionless Total Angular Momentum Magnitude vs. time’);
xlabel(’Time (seconds)’); ylabel(’|x|’);
figure;
plot(t,w(i,:),’w-’,t,w(2,:),’b-’,t,w(3,:),’r—’);
legend(’wi’,’w2’,’w3’);
title(’Dimensionless Spacecraft angular velocities vs. time’);
xlabel(’Time’); ylabel(’w’);
nd ;

Plot vehicle attitude during maneuver

f pltflgd==
h
% now let’s plot body axes relative to inertial axes vs. time
h
rows=stln;
for i=1:rows
if t(i)<=t0, imin=i; end; % set starting index to correspond to tO
end;
for i=1:rows
if t(i)<=tf, imax=i; end; % set vector index to correspond to tf
end;
if imax<2, imin=1; imax=2; end;
incr=round((imax-imin)/num); Y% increment for vector index during plot
if incr<i, incr=1; end;
plot_timestep=t(incr) % display time step for reference
h
% create vectors defining the polygon representing the satellite

[

if satmod==1 % GPS Blk IIR model
%

% X component of vertices

[}

h

XXv=[ 1 1 1 1 1; % face +bi

1 -1-1-1-1; % face -bi
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405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448

1-1-1 1 1; % face +b2
1 -1-1 1 1; % face -b2
1 1-1-1 1; % face

1 1 -1-1 1]; % face -b3
%

XXs=[L 0 0 0 O O;

0O 0 0 0 0];

h

% Y component of vertices

h

YYv=[ -1 1
-1 1 1-1-1;

11 1 1 1;
-1 -1-1-1-1;
-1 1 1-1-1;
-1 1 1 -1-1];

h

YYs=[ 2 5 &5 2 2;
-2 -5 -5 -2 -2];

h

% Z component of vertices

h

ZZv=[ -1 -1 1
-1 -1 1 1-1;
-1 -1 1 1-1;
-1 -1 1 1-1;

i1 1 1 1
-1 -1 -1 -1 -1];

h

ZZs=[ -.56 -.5 .5
-.5-.56 .5 .5-.5];

h

elseif satmod==

1 -1 -1;

1 -1;

.5 -.5;

+b3 Earth pointing

% +b2 solar array
% -b2 solar array

% Hubble Telescope model

[XXv,YYv,ZZv]=cylinder([1*ones(1,10) .8*ones(1,8)],20);

ZZv=2Zv-.5;

ZZv=6.%ZZv;

XXs=s[ 0 O O O 0

o 0 0 o0 0];

Yys=[ 1.2 2.2 2.2 1.2
-1.2 -2.2 -2.2 -1.2 -1.2];

ZZs=[ -3 -3 3 3 -3;
-3 -3 3 3 -3];
ss=[1 0 0];

end;
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449
450
451
452
453
454
455
456
457
458
459
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461
462
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464
465
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467
468
469
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473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

h
XXvrow=size(XXv,1); XXvcol=size(XXv,2);
XXsrow=size(XXs,1); XXscol=size(XXs,2);

%
i=imin;
loopflgl=0; % flag to break out of while loop when
while loopflgl== % imax plotted.
if i>imax % ensure attitude at tf is plotted
i=imax;
loopflgl=1;
end;
/

Rbi=[b1(i,:)’ b2(i,:)? b3(i,:)’]; % rot. matrix relating Fb to Fi
% x]i=Rbixx|b
%
% rotate vehicle model
%
for row=1i:XXvrow
for col=1:XXvcol
y=Rbix* [XXv(row,col); YYv(row,col); ZZv(row,col)];
Xv(row,col)=y(1); Yv(row,col)=y(2); Zv(row,col)=y(3);
end;
end;
%
% rotate array model
%
for row=1:XXsrow
for col=1:XXscol
y=Rbi*[XXs(row,col); Y¥s(row,col); ZZs(row,col)];
Xs(row,col)=y(1); Ys(row,col)=y(2); Zs(row,col)=y(3);

end;

end;

CCv=’m’; CCs=’b’; % color s/c magenta, arrays blue

figure; % Open new figure for attitude plot

set(gcf, ’Position’,attpos);

hold on;

if satmod==1 % GPS IIR Model plot
£il1l13(Xv’,Yv’,Zv’ ,CCv); % plot satellite model
£i113(Xs’,Y¥s’,Zs’,CCs); % plot solar arrays

h

elseif satmod== % Hubble model plot
surfl(Xv,Yv,Zv,SS); % plot satellite model

colormap copper;
shading faceted;
brighten(.5);
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494 £i113(Xs’,Ys’,Zs’,CCs); % plot solar arrays

495 end;

496 h

497 lineft([0 0 0],[0 8 0],1,’y’); % plot Fi axes

498 lineft([0 0 0],[0 0 8],1,%y’);

499 lineft([0 0 0],[8 0 0],1,°y’);

500 text([8.5;0;0],[0;8.5;0],[O;O;8.5],[’I’;’J’;’K’]); % label Fi axes
501 %

502 lineft ([0 0 0],5%xi(i,:),2,’r’); % plot total angular momentum
503 text(6*xi(i,1),6*xi(i,2),6%*xi(i,3),’h’); % Label h vector

504 h

505 if pertflg>0

506 lineft([7.8 0 2],[7.8 0 2]+2*xsun{(i,:),2,’w’); % plot sun vector
507 text(8.5,0,2,°Sun’); % label sun vector
508 end;

509 h

510 lineft(b1(i,:),5.4*%b1(i,:),1,’g’); % plot Fb axes

511 lineft(b2(i,:),5.4*b2(i,:),1,’g’);

512 if satmod==1 % plot solar array booms

513 lineft(b2(i,:),2*%b2(i,:),2,’g’);

514 lineft(-b2(i,:),-2*%b2(i,:),2,’g’);

515 elseif satmod==

516 lineft(b2(i,:),1.2%b2(i,:),2,°g’);

517 lineft(-b2(i,:),-1.2*b2(i,:),2,’g’);

518 end;

519 lineft(b3(i,:),5.4*b3(i,:),1,°g’);

520 text (6*b1(i,1),6%b1(i,2),6%b1(i,3),’b1’); % label body axes

521 text(6%b2(i,1),6%b2(i,2),6%b2(i,3),’b2’);

522 text(6%b3(i,1),6%b3(i,2),6%b3(i,3),’b3");

523 )

524 axis([-6 6 -6 6 -6 6]);

525 axis off;

526 view(130,20);

527 if satmod==1, title(’GPS IIR Attitude Model’);

528 elseif satmod==2, title(’Hubble Space Telescope Attitude Model’);
529 end;

530 tstring=num2str(t_d(i)); % convert current time to string
531 text(-5,0,5.95,’time (sec)?’); text(-5,0,5.2,tstring);

532 i=i+incr;

533 end;

534 maxfig=gcf; % Get last figure handle

535 end;
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D.4 Unperturbed Direct Control Law Equations

O 0 N O G d W N -

W WWwWwwwwwwwNNNDNDDNDNDNDNDNDNNDF e e b s
O W OO ~NO O b WNEFE O WO P WNEFE OWOWNOOLD WND O

function statedot=rotor_el(t,state)
h
YA AN A AN AN Y AN A AN AN A A AN A A A YA

Wk ol
%% rotor_el.m Wi
Wk il
Wk Capt Greg Schultz, GA-95D WA
Wk hil
YA revision Yy
L A — AN
oY 11.03.95.1530 )
" il

YA A A YAy AN A Y YA AN A YA A Y YA YA YTy

h

% This file contains the equations of motion for a
% satellite with 3 embedded axisymmetric momentum
% wheels, without external perturbing torques.

% this includes direct trajectory for wheel spin-u
J y P P

% calling program is rotor_m.m

global A; % Allow usage of rotor direction unit vectors
global JI; % Allow usage of pseudo inertia matrix inverse
global mu_o mu_f; % Allow usage of initial and final rotor momenta
global direct; % column vec. containing direct trajectory torques
/

x= [state(1); state(2); state(3)]; ' vehicle momenta (in Fb)
mu=[state(4); state(5); state(6)]; ¥ rotor momenta

g= [state(7); state(8); state(9); state(10)]; % Quaternions
%
% Now set up EOM for vehicle momenta (x),
% rotor momenta (mu), and quaternions (q)
h
xx=[ 0 -x(3) x(2);
x(3) 0 -x(1);
-x(2) x(1) 0];
%
w=JI*(x-A*mu) ; % angular velocities

/
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41 gx=[ 0 w(3) -w(2) w(1);

42 -w(3) 0 w(l) w(2);

43 w(2) -w(1) o0 w(3);

44 -w(1) -w(2) -w(3) 0];

45

46 xdot=xx*Ww; % rotational Eq.
47 mudot=direct; % wheel torque Eq.
48 qdot=.5%qx*q;

49 9

50 statedot=[xdot’ mudot’ qdot’]; /i return state

D.5 Unperturbed Sub-optimal Control Law Equations

1 function statedot=rotor_e2(t,state)

2 %

I A YA AN SN Ay YA Y Y A A YA A YA AN Y

4 Wbk W

5 WA rotor_e2.m WAk

6 Wik W

7 WA Capt Greg Schultz, GA-95D WA

8 WA Wk

9 Wk revision WAk

o WL e Wk

11 W 11.02.95.1300 Wi

12 W% Wk

13 AAAAAARDRRRAAIII DD DDA RARD DDA DA DDA AAADD DD

14 4

15 Y% This file contains the equations of motion for a

16 Y satellite with 3 embedded axisymmetric momentum

17 ) wheels, without external perturbing torques.

18

19 Y% this includes sub-optimal trajectory for wheel spin-up
20
21 J, calling program is rotor_m.m

22 1

23 global A B JI Ic h_o Rgmu alal ala2 a2a2 small;

24 Y

25 x= [state(1); state(2); state(3)]; % vehicle momenta (in Fb)
26 mu=[state(4); state(5); state(6)]; % rotor momenta
27 q= [state(7); state(8); state(9); state(10)]; % Quaternions
28
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29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

% Now set up EOM for vehicle momenta (x),
% rotor momenta (mu), and quaternions (q)
h
xx=[ 0 -x(3) x(2);

x(3) 0 -x(1);

-x(2) x(1 0l;
h
w=JI*(x-A*mu) ; % angular velocities
h
gx=[ 0 w(3) -w(2) w(1);

-w(3) 0 w(1) w(2);

w(2) -w(1) 0 w(3);

-w(1) -w(2) -w(3) 0l;

h

xdot=xx*w; % rotational Eq (in Fb)
mudot=-small*Rgmu*B*Rgmu’ *mu; % wheel torque Eq (in Fb)
qdot=.5%qx*q; % attitude Eq (in Fb)

)/

L]

% output state vector after integration
h

statedot=[xdot’ mudot’ qdot’];

D.6 Perturbed Sub-optimal Control Law Equations

0 N O Oy WN -

function statedot=rotor_e2_per(t,state)
%
%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%

ki Wk
W% rotor_e2_per.m 9wy
il W
Wi Capt Greg Schultz, GA-95D %Y
i W
(3 revision AN
WY - oy
WA 11.03.95.0830 Y
whl W

A A A A YA YA Y A ANy YA A Y A A A A A YY)

h

% This file contains the equations of motion for a
% satellite with 3 embedded axisymmetric momentum
% wheels, WITH external perturbing torques.
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)

% this includes sub-optimal wheel torque control

)

% calling program is rotor_m.m

)

global A B I_d JI Ic h_o rho_d rho_s

global Rgmu alal ala2 a2a2 small;

global rs ns As r_sm r_lg R_sm R_lg satmod pertflg;

h

GM=398601.2; % Earth gravitational parameter = constant
Psun=4.644e-06; % Solar pressure constant

wsun=1.99e-07; % Sun vector angular velocity (rad/s) = constant

h

Xx= [state(1); state(2); state(3)]; % vehicle momenta (in Fb)
mu= [state(4); state(5); state(6)]; % rotor momenta

q= [state(7); state(8); state(9); state(10)]; % Quaternions

ths= [state(11)]; % sun vector angle from el
Ri= [state(12); state(13); state(14)]; % orb. pos. vector (in Fi)
Vi= [state(15); state(16); state(17)]; % orb. vel. vector (in Fi)
h

% Now set up EOM for vehicle momenta (x),
% rotor momenta (mu), and quaternions (q)
)
xx=[ 0 -x(3) x(2);

x(3) 0 -x(1);

-x(2) x(1) 0l;
h
w=JI*(x-A*mu) ; % angular velocities
A
gx=[ 0 w(3) -w(2) w(1);

-w(3) 0 w() w(2);

w(2) -w(1) 0 w(3);
-w(1) -w(2) -w(3) 0];

[/

Si=[sin(ths); cos(ths); 0]; % sun vector (in Fi)

T=quat2rot(q); % rotation matrix y|b=T*R|i

Sb=T*S1i; % sun vector (in Fb)

b1i=[T(1,:)]1’; % spacecraft body axes (in Fi)
b2i=[T(2,:)]’;

b3i=[T(3,:)]?;

if pertflg== % calc. gravity grad. torques (in Fb)

c3=[b1li’*Ri; b2i’#Ri; b3i’*Ril/norm(Ri); % dir. cosines betw. Fb and Rordb
c3x=[ 0 -c3(3) ¢c3(2);

c3(3) 0 -c3(1);

-c3(2) ¢c3(1) 0];
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63 Mg=c3x*I_d*c3*3*GM/(norm(Ri)“3);
64 else Mg=[0 0 0]’;

65 end;

66 %

67 if pertflg>0 % calc. solar pressure torques (in Fb)
68 for ii=1:10

69 rsx=[ O -rs(ii,3) rs(ii,2);

70 rs(ii,3) 0 -rs(ii,1);

71 -rs(ii,2) rs(ii,1) 0];

72 nsS=(ns(ii, :)*Sb);

73 if nsS>0, nsS=0; end; % don’t count surfaces in shadow
74 Ms(ii,:)=(-nsS*rsx*((1-rho_s)*Sb+ ..

75 2% (rho_s+rho_d/3)*ns(ii, :)’)*Psun*As(ii))’;

76 end;

77 if satmod== % account for cylinder surf. for Hub.
78 ns(1,:)=[-Si’*b1i -Si’*b2i 0]/norm([-Si’#*bii -Si’*b2i 0]);

79 ns(2,:)=ns(1,:);

80 rs(1,:)=R_sm+r_sm*ns(1,:);

81 rs(2,:)=R_1g+r_sm*ns(2,:);

82 rsix=[ O -rs(1,3) 1rs(1,2);

83 rs(1,3) 0 -rs(1,1);

84 -rs(1,2) rs(1,1) 0];

85 rs2x=[ O -rs(2,3) 1rs(2,2);

86 rs(2,3) 0 -rs(2,1);

87 -rs(2,2) rs(2,1) 0];

88 Ms(1,:)=(-(ns(1,:)*Si)*rsix*((1-rho_s)*Sb+ ...

89 2% (rho_s+rho_d/3)*ns(1,:)’)*Psun*As(1))’;

90 Ms(2,:)=(-(ns(2,:)*Si)*rs2x*((1-rho_s)*Sb+ ...

91 2% (rho_s+rho_d/3)*ns(2,:) ’)*Psun*As(2))’;

92 end;

93 Ms=Ms(1,:)+Ms(2,:)+Ms(3,:)+Ms(4,:)+Ms(5,:)+Ms(6,:)+Ms(7,:)+Ms(8,:);
94 Ms=Ms’;
95 else Ms=[0 0 0]’;

96 end;

97 %

98 M=(Mg+Ms)*Ic/(h_0"2); % non-dimensional ext. torque (in Fb)
99 %

100 Y% Equations of motion

101 ¥

102 xdot=xx*w+M; % rotational Eq (in Fb)

103 mudot=-small*Rgmu*B*Rgmu’*mu; % wheel torque Eq (in Fb)

104 qdot=.5%gx*q; % attitude Eq (in Fb)

105 Rorbdot=Vi; % orbital position Eq (in Fi)
106 Vorbdot=-GM*Ri/(norm(Ri)~3); % orbital velocity Eq (in Fi)
107 thsdot=wsun; % sun vector Eq (in Fi)
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108 %
109 Y% output state vector after integration
110 4

111 statedot=[xdot’ mudot’ qdot’ thsdot’ Rorbdot’ Vorbdot’];

D.7 Wheel Momenta Ellipsoid Plotting Function (point by point)

1 function e=ell_p1t0(a1,a2,a3,min1,max1,min3,max3,inc);

2

3 U A AR AR DADDDDDDDDDDDDDDD DD

4 Yk Wik

5 U4 ell_pltO.m %

6 UL W%

T W Capt Greg Schultz, GA-95D WA%

8 Wi WA

9 Wik revision ANA

0 WL e WA

11 W 10.30.95.1200 Wk

12 WA

13 URUUARD DR RAAADI DDA DOARAD DD DDAADDDD DALY

14

15 % e=ell_pltO(al,a2,a3,mini,max1,min3,max3,inc)

16 %

17 % This routine plots the stationary platform wheel momenta
18 % solution "ellipsoid" in the wheel momenta "mu frame".

19 % al,a2,a3 are 3 element column vectors representing

20 Y% wheel orientation w.r.t. body fixed frame.

21 %

22 % minil,max1,min3,max3 are min and max values for

23 Y% mul and mu3 respectively, to search over to calc mu2.

24

25 global Is_d h_o wsmax;

26

27 hsmax=(Is_d*wsmax’)’; % vector of maximum allowable wheel momenta
28 A=[al a2 a3];

29 if rank(A)<3

30 > Wheel unit vectors do not form a basis - ill-posed problem’
31 break;

32 end;

33 %

34 al_a2=al’*a2; al_a3=al’*a3; a2_a3=a2’*a3; % these should all<l
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al_al=al’*al; a2_a2=a2’*a2; a3_a3=a3’*a3; % these should all=i

%

% Generate plot points for wheel momentum ellipsoid
%

na=0; nb=0;

for m3=min3:inc:max3
for mi=mini:inc:maxi

na=na+i;

nb=nb+1;

m2=roots([a2_a2 2*mi*al_a2+2*m3*a2_a3* ...

al_al*mi~2+a3_a3*m3"2+2*mi*m3*al_a3-1]);

%

if abs(imag(m2(1)))<1e-06 % only store real roots for plotting
m2(1)=real(m2(1)); % discard numerical imaginary "residue"
m2(2)=real(m2(2));
ma(na,:)=[ml1 m2(1) m3];
mb(nb, :)=[m1 m2(2) m3];
hsa=(h_o*[ml1 m2(1) m3]’)’;
hsb=(h_o*[m1 m2(2) m3]°’)’;
if min(hsmax-abs(hsa))<0, na=na-1; end; % Don’t plot if wheel momenta
if min(hsmax-abs(hsb))<0, nb=nb-1; end; % larger than max. allow.

else % don’t store complex roots for plotting
na=na-1;
nb=nb-1;
end;
end;
end;
[/
figure(1); % plot wheel momenta ellipsoid

axis([-1.5 1.5 -1.5 1.5 -1.5 1.5]);

view(120,30);

hold on;

plot3(ma(:,1),ma(:,2),ma(:,3),’r.”);
plot3(mb(:,1),mb(:,2),mb(:,3),’r.”);

lineft([0 0 0],[2 0 0],1,’y?);text(2.1,0,0,’mul’);
lineft ([0 0 0],[0 2 0],1,’y’);text(0,2.1,0,’mu2’);
lineft([0 0 0],[0 0 2],1,’y’);text(0,0,2.1,’mu3’);
lineft([0 0 0],[-2 0 01,1,’y’);

lineft([0 0 0],[0 -2 0],1,’y?);

lineft([0 0 0],[0 O -2],1,’y’);

title(’wheel torque traj. w.r.t. stat. platform relative momenta surface’);
xlabel(’mu 1’); ylabel(’mu 2’); zlabel(’mu 3’);
hold off;

%

figure(2); % now plot s/c total momentum sphere
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80 axis([-1.5 1.5 -1.5 1.5 -1.5 1.5]);
81 view(120,30);

82 hold on;

83 sinc=deg2rad(5);

84 for v=-pi/2:sinc:pi/2

85 id=1;

86 for u=0:sinc:2x%pi

87 rp=[cos(v)*cos(u); cos(v)*sin(w); sin(v);];
88 rx(id,:)=rp’;

89 id=id+1;

90 end;

91 plot3(rx(:,1),rx(:,2),rx(:,3),’b:’);

92 end;

93 1lineft([0 0 0],[2 0 0],1,’y’);text(2.1,0,0,’x1’);

94 1lineft([0 0 0],[0 2 0],1,’y’);text(0,2.1,0,°x2’);

95 1lineft([0 0 0],[0 0 2],1,’y’);text(0,0,2.1,°%3’);

96 1lineft([0 0 0],[-2 0 0],1,°’y’);

97 1lineft([0 0 01,[0 -2 0],1,’y’);

98 1lineft([0 0 0],[0 0 -2],1,’y’);

99 title(’spacecraft momenta traj. during stationary platform maneuver’);
100 xlabel(’x1’); ylabel(’x2’); zlabel(’x3’);

101 hold off;

D.8 Wheel Momenta Ellipsoid Plotting Function (parameterized)

1 function e=ell_plti(al,a2,a3,inc)

2

I A NN NN AN YA AN AN YN A YA A YA Y YA A A
4 Wk W%
5 Wk ell_plti.m Wk
6 Wik WA
Yy Capt Greg Schultz, GA-95D W
8 i WA
9 W revision AN
10 WA mmmmemmeeeee- WA
11 W% 10.09.95.1130 AN
12 Wk Wk
R I N AN AN YA N AN A NSNS YA Y Y AN YA Y YA AN
14

15 Y e=ell_plti(al,a2,a3,inc);

16

17 % This function plots the ellipsoid which is the
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% solution to the stationary platform condition

% (mu’)(A’)(A)(mu)=0, given the columns of A=[al a2 a3]

% The plotting resolution is determined by inc (in degrees)
/

% basically, this routine parameterizes the ellipsoid in the
% ellipsoid principal frame, then rotates the points back

% to the "mu" frame for plotting

%

% Also plots the related spacecraft momentum sphere

% arising from condition that x’x=1

%

inc=deg2rad(inc); % convert inc to radians

A=[al a2 a3];

[R,abc]l=eig(A’*4); % calculate e-vectors, e-values
a=1/sqrt(abc(1,1)); % lengths of ellipsoid axes
b=1/sqrt(abc(2,2)); % are the eigenvalues of A’A

c=1/sqrt(abc(3,3));
%

figure(1); % plot wheel momenta ellipsoid

axis([-1.5 1.5 -1.5 1.5 -1.5 1.5]);

view(120,30);

hold on;

h

for v=-pi/2:inc:pi/2 % parameterize with angles u,v
id=1;

for u=0:inc:2%pi
rp=[a*cos(v)*cos(u); b*cos(v)*sin(u); c*sin(v);]1;
rmu(id, :)=(R*rp)’;
rx(id,:)=(A*rmu(id,:)’)’;
id=id+1;
end;
plot3(rmu(:,1),rmu(:,2),rmu(:,3),’r:’); % plot ellipses
end;
h
lineft([0 0 0],[2 0 0],1,’y’);text(2.1,0,0,’mul’);
lineft([0 0 0],[0 2 0],1,’y’);text(0,2.1,0,’mu2’);
lineft([0 0 0],[0 0 2],1,’y’);text(0,0,2.1,’mu3’);
lineft([0 0 0],[-2 0 0],1,°’y?);
lineft([0 0 0],[0 -2 0],1,’y?);
lineft([0 0 0],[0 0 -2],1,%y?);
title(’rotor torque traj. w.r.t. stat. platform relative momenta surface’);
xlabel(’mu 1’); ylabel(’mu 2’); zlabel(’mu 3’);
hold off;
%

figure(2); Y now plot s/c total momentum sphere
g P P
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axis([-1.5 1.5 -1.5 1.5 -1.5 1.5]);
view(120,30);

hold on;

for v=-pi/2:inc:pi/2

id=1;

for u=0:inc:2%pi
rp=[cos(v)*cos(u); cos(v)*sin(u); sin(v);];
rx(id,:)=rp’;

id=id+1;

end;

plot3(rx(:,1),rx(:,2),rx(:,3),’b:’);

end;

lineft ([0
lineft ([0
lineft ([0
lineft ([0
lineft ([0
lineft ([0

0
0
0
0
0

0

0],[2 0 0],1,%y’);text(2.1,0,0,°x1’);
0],[0 2 0],1,’y’);text(0,2.1,0,°x2’);
0],[0 0 2],1,%y’);text(0,0,2.1,7x3’);

0],[-2 0 0],1,°y%);
ol,[0 -2 0],1,’y%);
o]s[O 0 -2]31)’y,);

title(’spacecraft momenta traj. during stat. platform maneuver’);
xlabel(’x1’); ylabel(’x2’); zlabel(’x3’);

hold off;

“1” Azis Rotation Matriz Function

function Ri=roti(a)

%

% Ri=roti(a)

)

% Frame ijk is rotated by angle a (radians) about

% axis i in a positive sense (right hand rule) relative
% to fixed frame IJK.

[/

% R1’ is the rotation matrix that transforms a vector x
% expressed in frame ijk to a vector X expressed in frame IJK.

[/

h e.g.

h

Ri=[ 1
0
0

if a=pi/4 and x=[1 1 0]’, then X = R1’x*x

0 0;
cos(a) sin(a);
-sin(a) cos(a)l;
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D.10 “3” Azis Rotation Matriz Function

1 function R3=rot3(a)

2

3 % R3=rot3(a)

4

5 Y Frame ijk is rotated by angle a (radians) about

6 Y% axis k in a positive sense (right hand rule) relative

7 'h to fixed frame IJK.

8 %

9 % R3’ is the rotation matrix that transforms a vector x expressed
10 % in frame ijk to a vector X expressed in frame IJK.

11 %

12 % e.g. if a=pi/4 and x=[1 0 1]’, then X = R3’*x = [.7071 .7071 1]’
13 %

14 R3=[ cos(a) sin(a) 0;

15 -sin(a) cos(a) 0;

16 0 o 11

.11 Quaternion to Rotation Matriz Conversion Function

D

1 function Rg=quat2rot(q)

2

3 % Rg=quat2rot(q)

4

5 % This function produces a transformation matrix Rq

6 ) based on quaternions specified by the 4 element row vector
7 % q. This rotation matrix can be used to transform a

8 U vector from a rotated frame to a non-rotated frame

9

10 Rq(i,1)=q(1)‘2-q(2)‘2-q(3)‘2+q(4)‘2;
11 Rq(1,2)=2x(q(1)*q(2)+q(3)*q(4));
12 Rq(1,3)=2%(q(1)*q(3)-q(2)*q(4));
13 Rq(2,1)=2%(q(1)*q(2)-q(3)*q(4));
14 Rq(2,2)=-q(1)"2+q(2)"2-q(3)"2+q(4)"2;
15 Rq(2,3)=2x(q(1)*q(4)+q(2)%q(3));
16 Rq(3,1)=2%(q(1)*q(3)+q(2)*q(4));
17 Rq(3,2)=2%(-q(1)*q(4)+q(2)*q(3));
18 Rq(3,3)=-q(1)"2-q(2)"2+q(3)"2+q(4)"2;
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D.12 Vector Cross Prodcut Function

DD WN -

function ¢ = cross(a,b)

% CROSS Cross product of two vectors ¢ = ax b

% a and b must have 3 components

h

% ¢ = cross(a,b)

c=[a(2)*b(3)-a(3)*b(2) a(3)*b(1)-a(1)*b(3)  a(1)*b(2)-a(2)*b(1)];

D.13 Degrees to Radians Conversion Function

O W

function x = deg2rad(a)

%DEG2RAD converts angle from degrees to radians
% syntax x = deg2rad(a)

[/

[/

x = (a/360)*2%pi;

D.14 Radians to Degrees Conversion Function

O O W N

function x = rad2deg(a)

%RAD2DEG converts angle from radians to degrees
% Syntax x = rad2deg(a)

h

h

x = (a/pi)*180;

D.15 3-D Line Plotting Function

O 0 ~NO O WN =

Ll el
S WD, O

function H=lineft(rl,r2,thickness,color)
%
% H = lineft(r1,r2,thickness,color)
%
% Draws a line of thickness from rl1 to r2
% in cartesian coordinates.
% color is a 1 or 2 char string.
%
if nargin==2, thickness=1; end;
X=[r1(1) r2(1)1’;
Y=[r1(2) r2(2)]1’;
Z=[r1(3) r2(3)]’;
H=1ine(X,Y,Z);
set(H,’LineWidth’,thickness,’Color’,color);
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This study investigated the applicability and limitations of a sub-optimal control law for stationary platform
maneuvers of rigid three-axis stabilized spacecraft using three momentum wheels. Computer simulations using
this control law were conducted for existing operational spacecraft (GPS Block IIR and Hubble Space Telescope)
in both a torque free environment and an environment with gravity gradient and solar pressure torques, to
characterize the utility of such control laws for vehicles using momentum wheels for primary attitude control vs.
those using them only to augment the primary system. Results indicate that while the control law is useful in
real applications, there is a significant trade-off between maneuvering time and final state errors.
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