3,561 research outputs found

    Schulman Replies

    Full text link
    This is a reply to a comment of Casati, Chirikov and Zhirov (PRL 85, 896 (2000)) on PRL 83, 5419 (1999). The suitability of the particlar two-time boundary value problem used in the earlier PRL is argued

    Ideal CdTe/HgTe superlattices

    Get PDF
    In this paper we consider a new superlattice system consisting of alternating layers of CdTe and HgTe constructed parallel to the (001) zincblende plane. The tight‐binding method is used to calculate the electronic properties of this system, in particular, band edge and interface properties. The energy gap as a function of layer thickness is determined. It is found to decrease monotonically with increasing HgTe layer thickness for a fixed ratio of CdTe to HgTe layer thicknesses. The symmetry of the valence band maximum state is found to change at certain HgTe layer thicknesses. This is explained by relating the superlattice states to bulk CdTe and HgTe states. The existence of interface states is investigated for the superlattice with 12 layers of CdTe alternating with 12 of HgTe. Interface states are found near the boundaries of the Brillouin zone, but none are found in the band gap

    A comparison of landing maneuver piloting technique based on measurements made in an airline training simulator and in actual flight

    Get PDF
    An emphasis is placed on developing a mathematical model in order to identify useful metrics, quantify piloting technique, and define simulator fidelity. On the basis of DC-10 flight measurements recorded for 32 pilots, 13 flight-trained and the remainder simulator trained, a revised model of the landing flare is hypothesized which accounts for reduction of sink rate and perference for touchdown point along the runway. The flare maneuver and touchdown point adjustment can be described by a pitch attitude command pilot guidance law consisting of altitude and vertical velocity feedbacks. In flight pilots exhibit a significant vertical velocity feedback which is essential for well controlled sink rate reduction at the desired level of response (bandwidth). In the simulator, however, the vertical velocity feedback appears ineffectual and leads to substantially inferior landing performance

    Tight‐binding calculation for the AlAs–GaAs (100) interface

    Get PDF
    We report the results of a study of the electronic properties of the AlAs–GaAs interface using the tight‐binding method. The tight‐binding matrix for the superlattice system is used in the limit in which the thickness of the repeated superlattice slab becomes large. This system is studied in detail with special emphasis placed on the determination of interface states. No interface states with energies within the GaAs forbidden gap are found. The densities of states per layer are calculated and compared with bulk densities of states. They resemble the bulk densities of states except for layers adjacent to the interface

    Localization of superlattice electronic states and complex bulk band structures

    Get PDF
    The relative lineup of the band structures of the two constituents of a semiconductor superlattice can cause charge carriers to be confined. This occurs when the energy of a superlattice state is located in an allowed energy region of one of the constituents (the "well" semiconductor), but in the band gap of the other (the "barrier" semiconductor). A charge carrier will tend to be confined in the layers made from the semiconductor with the allowed region at that energy. It will have an exponentially decaying amplitude to be found in the semiconductor with a band gap at that energy

    Opposite Thermodynamic Arrows of Time

    Full text link
    A model in which two weakly coupled systems maintain opposite running thermodynamic arrows of time is exhibited. Each experiences its own retarded electromagnetic interaction and can be seen by the other. The possibility of opposite-arrow systems at stellar distances is explored and a relation to dark matter suggested.Comment: To appear in Phys. Rev. Let

    An analysis of airline landing flare data based on flight and training simulator measurements

    Get PDF
    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft

    Transport mechanism through metal-cobaltite interfaces

    Get PDF
    The resistive switching (RS) properties as a function of temperature were studied for Ag/La1−x_{1-x}Srx_xCoO3_3 (LSCO) interfaces. The LSCO is a fully-relaxed 100 nm film grown by metal organic deposition on a LaAlO3_3 substrate. Both low and a high resistance states were set at room temperature and the temperature dependence of their current-voltage (IV) characteristics was mea- sured taking care to avoid a significant change of the resistance state. The obtained non-trivial IV curves of each state were well reproduced by a circuit model which includes a Poole-Frenkel element and two ohmic resistances. A microscopic description of the changes produced by the RS is given, which enables to envision a picture of the interface as an area where conductive and insulating phases are mixed, producing Maxwell-Wagner contributions to the dielectric properties.Comment: 13 pages, 5 figures, to be published in APL. Corresponding author: C. Acha ([email protected]

    The Auxiliary Field Method in Quantum Mechanical Four-Fermi Models -- A Study Toward Chiral Condensation in QED

    Full text link
    A study for checking validity of the auxiliary field method (AFM) is made in quantum mechanical four-fermi models which act as a prototype of models for chiral symmetry breaking in Quantum Electrodynamics. It has been shown that AFM, defined by an insertion of Gaussian identity to path integral formulas and by the loop expansion, becomes more accurate when taking higher order terms into account under the bosonic model with a quartic coupling in 0- and 1-dimensions as well as the model with a four-fermi interaction in 0-dimension. The case is also confirmed in terms of two models with the four-fermi interaction among NN species in 1-dimension (the quantum mechanical four-fermi models): higher order corrections lead us toward the exact energy of the ground state. It is found that the second model belongs to a WKB-exact class that has no higher order corrections other than the lowest correction. Discussions are also made for unreliability on the continuous time representation of path integration and for a new model of QED as a suitable probe for chiral symmetry breaking.Comment: 30 pages, 12 figure
    • 

    corecore