1,172 research outputs found

    Single-molecule FRET of protein structure and dynamics - a primer

    Full text link

    Detection and Analysis of Protein Aggregation with Confocal Single Molecule Fluorescence Spectroscopy

    Get PDF
    The misfolding and aggregation of proteins is a common phenomenon both in the cell, in in vitro protein refolding, and the corresponding biotechnological applications. Most importantly, it is involved in a wide range of diseases, including some of the most prevalent neurodegenerative disorders. However, the range of methods available to analyze this highly heterogeneous process and the resulting aggregate structures has been very limited. Here we present an approach that uses confocal single molecule detection of FRET-labeled samples employing four detection channels to obtain information about diffusivity, anisotropy, fluorescence lifetimes and Förster transfer efficiencies from a single measurement. By combining these observables, this method allows the separation of subpopulations of folded and misfolded proteins in solution with high sensitivity and a differentiation of aggregates generated under different conditions. We demonstrate the versatility of the method with experiments on rhodanese, an aggregation-prone two-domain protei

    Preface: Special Topic on Single-Molecule Biophysics

    Full text link
    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics

    Disordered RNA chaperones can enhance nucleic acid folding via local charge screening

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.RNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations. The resulting compaction can bias unfolded nucleic acids towards folding, resulting in faster folding kinetics. This potentially widespread mechanism is supported by molecular simulations that rationalize the experimental findings by describing the chaperone as an unstructured polyelectrolyte.Swiss National Science FoundationEuropean Molecular Biology OrganizationIntramural Research Program of the NIDDK at the National Institutes of Healt

    Global Structure of the Intrinsically Disordered Protein Tau Emerges from Its Local Structure

    Full text link
    The paradigmatic disordered protein tau plays an important role in neuronal function and neurodegenerative diseases. To disentangle the factors controlling the balance between functional and disease-associated conformational states, we build a structural ensemble of the tau K18 fragment containing the four pseudorepeat domains involved in both microtubule binding and amyloid fibril formation. We assemble 129-residue-long tau K18 chains with atomic detail from an extensive fragment library constructed with molecular dynamics simulations. We introduce a reweighted hierarchical chain growth (RHCG) algorithm that integrates experimental data reporting on the local structure into the assembly process in a systematic manner. By combining Bayesian ensemble refinement with importance sampling, we obtain well-defined ensembles and overcome the problem of exponentially varying weights in the integrative modeling of long-chain polymeric molecules. The resulting tau K18 ensembles capture nuclear magnetic resonance (NMR) chemical shift and J-coupling measurements. Without further fitting, we achieve very good agreement with measurements of NMR residual dipolar couplings. The good agreement with experimental measures of global structure such as single-molecule Förster resonance energy transfer (FRET) efficiencies is improved further by ensemble refinement. By comparing wild-type and mutant ensembles, we show that pathogenic single-point P301L, P301S, and P301T mutations shift the population from the turn-like conformations of the functional microtubule-bound state to the extended conformations of disease-associated tau fibrils. RHCG thus provides us with an atomically detailed view of the population equilibrium between functional and aggregation-prone states of tau K18, and demonstrates that global structural characteristics of this intrinsically disordered protein emerge from its local structure

    Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations

    Full text link
    Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein-denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ)nW in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment
    corecore