Depletion interactions modulate the binding between disordered proteins in crowded environments

Franziska Zosel^{1,2}, Andrea Soranno^{1,3}, Karin J. Buholzer¹, Daniel Nettels¹, & Benjamin Schuler^{1,4}

¹Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ²Current Address: Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark

³Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Missouri 63130, United States

⁴Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Figure S1. Polymeric crowders and the depletion layer. (*A*) Color legend for PEGs with different molar masses. (*B*) Radius of gyration, R_g , plotted against the degree of polymerization, *P*, and the molar mass, *M*, of PEG^{1,2}, and a fit with the scaling law $R_g = 0.21 \text{ nm} \cdot P^{0.583}$.³ Deviations from the fit (which was obtained for PEG molecules over the entire range of lengths originally reported³) are due to finite-length effects for small values of *P*. The structural formula of PEG is given in the inset. (*C*) *Line*: overlap concentration, *C**, calculated from Eq. (1) with $R_g = 0.21 \text{ nm} \cdot P^{0.583}$, Circles: *C** calculated based on published R_g values¹⁻³. *Bars*: Ranges of PEG concentrations probed here. (*D*) The depletion layer around a colloidal particle (modeled as hard spheres of radius *R*, orange) in solution with polymers of radius of gyration R_g (gray). The thickness of the depletion layer, δ , is visualized for several regimes: For $R \gg R_g$ (top panel), the depletion layer is given by Eq. (9) and increases with crowder size (second and third panels); for $R \approx R_g$, Eq. (10) is valid. In the semidilute regime ($C > C^*$, fourth panel), the polymer chains overlap and form a network with a mesh size given by the correlation length $\xi = R_g (c/c^*)^{-0.77}$, resulting in $\delta = \xi$. (*E*) δ (calculated around a sphere with *R*=2 nm) as a function of the PEG concentration for every size of PEG used, with the respective overlap concentrations indicated as dashed lines.

Figure S2. Comparison of PEG to other polymeric crowders. (A) Chemical structures of PEG (EG-PEG 35000), dextran with an average molar mass of 40 kg/mol (Dextran 40K, blue square), polyvinyl alcohol with an average molar mass of 40.5 kg/mol (PVA 40K, red square), and polyvinylpyrrolidone with an average molar mass of 40 kg/mol (PVP 40K, green). Note that PEG, PVA, and PVP are linear polymers, whereas dextran is branched. (*B-E*) Examples of single-molecule measurements with immobilized donor-labeled ACTR molecules binding to acceptor-labeled NCBD (c.f. Fig. 1*A*) at three different concentrations of PVP 40K: 0% (gray), 9% (light green), and 18% (dark green). (*B*) Examples of time traces of association and dissociation, with the donor signal in magenta and the acceptor signal in light blue (first 20s each, binning: 50ms; not corrected for background, quantum yields, detection efficiencies, etc.). The gray lines represent the most likely state trajectories (bound and unbound) as determined by the Viterbi algorithm. (*C*) The time traces were binned at 20ms and combined to an apparent transfer efficiency histogram, from which the equilibrium dissociation constant, K_D can be obtained. (*D*) Normalized dwell-time distributions based on the Viterbi-assigned states of 52-79 molecules per condition for the unbound (left panel) and the bound states (right panel) to yield k_{on} and

 k_{off} , respectively. (*E*) Normalized FCS curves of the three conditions used in (*B*). The diffusion times (dashed lines) report on the translational diffusion of NCBD at the different conditions. (F) Binding experiments of ACTR and NCBD in the presence of different concentrations of Dextran 40K (blue), PVA 40K (red), and PVP 40K (green). For comparison, the experiments with the different PEGs as crowders are shown as circles (see legend for PEG sizes). Since the different crowders have very different monomer sizes, we show the dependencies of our observables as a function of volume fraction. The analysis with 1-ms binning in combination with the maximum-likelihood approach based on a hidden Markov model was used for obtaining the association rate coefficient (k_{on}), dissociation rate coefficient (k_{off}), equilibrium dissociation constant (K_D), and the change in interaction free energy ($\Delta\Delta G/k_BT$). The diffusion times (τ_D) represent the mean of two measurements and the error bars indicate the span. In the last panel, the relation between relative bulk viscosity ($\eta_{bulk}/\eta_{bulk,0}$) and the relative microviscosity is shown (c.f. Fig. 3).

Figure S3. Comparison of kinetic and equilibrium parameters obtained from maximum likelihood analysis using either a two-state model (Eq. 17, left column) or a three-state model (Eq. 16, middle and right columns). The three-state analysis assumes that NCBD can exist in two conformations that differ in the configuration of a proline residue (trans or cis)⁴. In the two-state analysis (which we focus on in the main text for the sake of clarity), the two conformations are treated as equivalent in terms of their response to crowding, which is supported by this comparison. See Methods for details.

Figure S4. FCS measurements of freely diffusing NCBD. (*A*) Raw data. Two measurements were done per PEG concentration (one before and one after recording surface trajectories); their respective average is displayed. Lighter colors indicate increasing PEG concentrations, with the corresponding range indicated in each plot. All FCS curves were fitted with a free amplitude, a diffusion term, and a triplet term (shared among all fits, see Materials and Methods). The resulting values were used to quantify the change in viscosity as well as the concentration of NCBD. (*B*) FCS curves normalized to an amplitude of 1 to illustrate the increase in diffusion time with increasing PEG concentration. (*C*) Mean number of molecules in the confocal volume, $\langle N \rangle$, normalized by the average over all measurements,

 $ig\langle Nig
angle_{_{
m avg}}$ (Materials and Methods), plotted against the PEG concentration. Data points are the mean of

two measurements, error bars indicate the span. For large PEGs (2050, 6000, 35000), there is a significant decrease in the number of NCBD molecules at high PEG concentrations. This effect is probably caused by adsorption of NCBD to the coverslip surface, as single molecule trajectories recorded under these conditions also display a significantly higher background in the acceptor channel. (*D*) Diffusion time of NCBD, plotted against the PEG concentration. Data points are the mean of two measurements, error bars indicate the span. (*E*) Bulk viscosities as a function of the PEG concentration, as measured by a shear-flow viscometer. The lines are polynomial interpolations of the data that were used as reference for fitting microviscosities.

Table S1. Experimental parameters recorded for the PEG titration series, as well as for the other crowders. 1st column: Concentration of crowder. 2nd column: total recording time of the experiment. 3rd column: concentration of NCBD determined as the mean of two FCS measurements (error reflects the span of the measurements). 4th column: viscosity relative to the viscosity in phosphate buffer (η/η_0) , determined from the mean diffusion time of NCBD in two FCS experiments (error reflects the span of the measurements). 5-6th column: fraction bound, determined from transfer efficiency histograms (histo) or rate coefficients (rates). 7th-9th column: association and dissociation rate coefficients, and equilibrium dissociation constant, determined from a fit with a two-state model. 10th-15th column: association and dissociation rate coefficients, and equilibrium dissociation constants, determined from a fit with a three-state model. Errors are propagated from the associated parameters.

50 mM sodium phosphate buffer														
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	$k_{off}(s^{-1})$	K ₀(nM)	k on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$k_{\rm off,1}$ (s ⁻¹)	$k_{\rm off,2}$ (s ⁻¹)	К_{D,1} (nM)	К_{D,2} (nM)
0	2033	16.3±0.2	0.97±0.03	0.33	0.34±0.02	3.8±0.1	7.4±0.6	31.4±2.6	2.4±0.2	1.4±0.1	5.6±0.7	27.7±2.2	24.1±3.5	118±13
0	2468	17.7±0.2	0.95±0.03	0.33	0.33±0.02	3.7±0.2	7.5±0.3	35.2±2.7	2.5±0.3	0.9±0.1	6.1±0.2	22.6±2.1	27.9±1.8	153±13
0	2600	20.1±0.1	1.05±0.05	0.40	0.40±0.02	5.3±0.2	7.9±0.2	29.8±1.2	3.6±0.1	1.6±0.1	6.5±0.2	26.5±1.7	23.0±0.7	118±11
0	3263	16.2±0.2	1.03±0.03	0.35	0.36±0.03	3.7±0.3	6.6±0.5	29.0±2.9	2.5±0.3	1.1±0.1	5.3±0.1	24.9±2.8	22.3±1.7	126±16
Ethylene glycol														
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	<i>k</i> off (S⁻¹)	К_D (nM)	k on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$k_{\rm off,1}$ (S ⁻¹)	$k_{off,2}$ (S ⁻¹)	К_{D,1} (n М)	К_{D,2} (nM)
0.05	2356	17.4±0.1	1.05±0.00	0.42	0.42±0.02	4.8±0.2	6.5±0.2	23.7±1.3	3.2±0.2	1.4±0.1	5.3±0.2	22.2±1.6	18.5±0.7	101±10
0.1	2563	16.4±0.2	1.20±0.03	0.49	0.49±0.02	5.3±0.2	5.5±0.1	17.0±0.7	3.4±0.1	1.3±0.1	4.4±0.1	18.1±1.2	13.5±0.4	83±8
0.151	2467	16.2±0.2	1.30±0.04	0.50	0.50±0.02	5.1±0.2	5.1±0.1	16.2±0.6	3.4±0.3	1.2±0.1	4.2±0.1	16.6±1.4	13.0±0.6	82±5
0.201	3245	16.2±0.1	1.44±0.03	0.55	0.55±0.03	5.3±0.2	4.3±0.2	13.0±0.8	3.4±0.1	1.3±0.1	3.4±0.1	15.8±1.0	10.3±0.4	69±8
0.251	2530	14.5±0.3	1.64±0.01	0.53	0.53±0.02	4.0±0.1	3.6±0.2	13.1±0.6	2.6±0.1	0.9±0.1	2.9±0.1	12.8±1.5	10.5±0.5	71±6
0.301	3253	16.9±0.1	1.99±0.00	0.53	0.53±0.04	3.7±0.2	3.3±0.2	14.9±1.2	2.4±0.2	0.9±0.0	2.6±0.0	12.0±0.6	11.9±0.8	84±4
0.351	3293	15.6±0.1	2.03±0.00	0.48	0.48±0.04	3.1±0.2	3.4±0.1	16.9±1.4	2.0±0.1	0.7±0.0	2.7±0.1	12.3±1.0	13.6±0.8	97±8
0.401	4283	15.7±0.3	2.36±0.00	0.45	0.45±0.04	2.7±0.2	3.3±0.3	19.0±2.3	1.7±0.1	0.7±0.0	2.6±0.2	11.2±1.1	15.3±0.7	92±13
Diethy	lene	glycol							-					
	total	Curren		frac.	frac bound									
C (g/ml)	time (s)	(nM)	η/η₀	bound (histo)	(rates)	k on (S ⁻¹)	k off (S ⁻¹)	К _D (nМ)	k on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$k_{off,1}$ (S ⁻¹)	k off,2 (S ⁻¹)	К_{D,1} (n М)	К_{D,2} (nM)
c (g/ml) 0.05	time (s) 2681	(nM) 16.3±0.2	η/η ₀ 1.16±0.06	bound (histo) 0.38	(rates)	<i>k</i> _{on} (s ⁻¹) 4.5±0.3	k _{off} (s ⁻¹) 7.1±0.3	K _D (nM) 25.6±1.8	k _{on,1} (s ⁻¹) 3.1±0.2	k _{on,2} (s ⁻¹) 1.3±0.1	k _{off,1} (s ⁻¹) 5.8±0.1	<i>k</i> _{off,2} (s ⁻¹) 24.2±1.9	K _{D,1} (nM) 20.0±0.9	К _{D,2} (nM) 106±11
c (g/ml) 0.05 0.101	time (s) 2681 2568	(nM) 16.3±0.2 18.8±0.3	η/η₀ 1.16±0.06 1.28±0.02	bound (histo) 0.38 0.46	(rates) 0.39±0.03 0.46±0.03	<i>k</i> _{on} (s ⁻¹) 4.5±0.3 4.9±0.2	<i>k</i> _{off} (s ⁻¹) 7.1±0.3 5.6±0.3	K _D (nM) 25.6±1.8 21.7±1.6	<i>k</i> _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2	<i>k</i> _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1	<i>k</i> _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3	<i>k</i> _{off,2} (S ⁻¹) 24.2±1.9 19.6±0.8	К _{р,1} (nM) 20.0±0.9 16.9±0.6	K _{D,2} (nM) 106±11 87±9
c (g/ml) 0.05 0.101 0.151	time (s) 2681 2568 3989	(nM) 16.3±0.2 18.8±0.3 18.4±0.4	<i>n/n</i> ₀ 1.16±0.06 1.28±0.02 1.51±0.02	bound (histo) 0.38 0.46 0.45	(rates) 0.39±0.03 0.46±0.03 0.46±0.02	<i>k</i> _{on} (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2	<i>k</i> _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1	κ _D (nM) 25.6±1.8 21.7±1.6 21.9±1.1	<i>k</i> _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3	k _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1	k _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7	K _{D,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1	 K_{D,2} (nM) 106±11 87±9 101±5
C (g/ml) 0.05 0.101 0.151 0.201	time (s) 2681 2568 3989 3841	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5	<pre>n/n₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00</pre>	bound (histo) 0.38 0.46 0.45 0.43	(rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03	k _{on} (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5	 K_D (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2	k _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1	<i>k</i> _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0	 K_{D,2} (nM) 106±11 87±9 101±5 107±14
C (g/ml) 0.05 0.101 0.151 0.201 0.252	time (s) 2681 2568 3989 3841 4248	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3	η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01	bound (histo) 0.38 0.46 0.45 0.43 0.43	nac. bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.02	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.2	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2	K _D (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2	k _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1	k _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7
C (g/ml) 0.05 0.101 0.151 0.201 0.252 0.302	time (s) 2681 2568 3989 3841 4248 2883	16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1	<pre>n/n₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01</pre>	bound (histo) 0.38 0.46 0.45 0.43 0.43 0.43	0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.02	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.2 3.3±0.1	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1	K _D (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1	k _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 3.7±0.1 3.5±0.1	<i>k</i> _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16
c (g/ml) 0.05 0.101 0.151 0.201 0.252 0.302 0.352	time (s) 2681 2568 3989 3841 4248 2883 3868	16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4	η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 	bound (histo) 0.38 0.46 0.45 0.43 0.43 0.43 0.37	nac. bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.02 0.43±0.01 0.38±0.02	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.2 3.5±0.2 3.3±0.1 2.7±0.2	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.6±0.1	Kp (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1	<pre>k_{on,1} (s⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2</pre>	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1 3.5±0.1 3.8±0.1	<i>k</i> _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11
C (g/ml) 0.05 0.101 0.251 0.201 0.252 0.302 0.352 0.402	time (s) 2681 2568 3989 3841 4248 2883 3868 3033	16.3±0.2 18.8±0.3 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4	<pre>n/n₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 3.28±0.03</pre>	bound (histo) 0.38 0.46 0.45 0.43 0.43 0.43 0.43 0.37	nac. bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.02 0.43±0.01 0.38±0.02 0.35±0.02	kon (S ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.2 3.3±0.1 2.7±0.2 2.5±0.1	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.6±0.1 4.7±0.1	Kp (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1 38.1±2.1	<pre>k_{on,1} (s⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1</pre>	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 3.7±0.1 3.5±0.1 3.8±0.1 3.9±0.1	<i>k</i> _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9
c (g/ml) 0.05 0.101 0.251 0.252 0.302 0.352 0.402 Trieth	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol	 η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 3.28±0.03 	bound (histo) 0.38 0.46 0.45 0.43 0.43 0.43 0.43 0.37 0.35	nat. bound 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.02 0.43±0.01 0.38±0.02 0.35±0.02	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.2 3.3±0.1 2.7±0.2 2.5±0.1	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.6±0.1 4.7±0.1	K _b (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1 38.1±2.1	<pre>k_{on,1} (s⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1</pre>	k _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 0.7±0.0	<pre>k_{off,1} (s⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1 3.5±0.1 3.8±0.1 3.9±0.1</pre>	<i>k</i> _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9
C (g/ml) 0.05 0.101 0.151 0.201 0.252 0.302 0.302 0.302 0.402 Trieth C (g/ml)	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene total time (s)	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol c _{NCBD} (nM)	η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 3.28±0.03 η/η₀	bound (histo) 0.38 0.46 0.45 0.43 0.43 0.43 0.43 0.37 0.35 frac. bound (histo)	nac. bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.02 0.43±0.01 0.38±0.02 0.35±0.02 frac. bound (rates)	kon (S ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.3±0.1 2.7±0.2 2.5±0.1	koff (S ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.3±0.1 4.6±0.1 4.7±0.1 koff (S ⁻¹)	κ _p (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1 38.1±2.1 κ _p (nM)	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1 k _{on,1} (s ⁻¹)	k _{on,2} (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 0.7±0.0 k _{on,2} (s ⁻¹)	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1 3.5±0.1 3.8±0.1 3.9±0.1 k _{off,1} (s ⁻¹)	k _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1 k _{off,2} (s ⁻¹)	К _{р,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5 К _{р,1} (nM)	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9 K _{b,2} (nM)
C (g/ml) 0.05 0.101 0.251 0.252 0.302 0.352 0.402 Trieth C (g/ml) 0.045	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene total time (s) 4140	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol c _{ncBD} (nM) 15.8±0.3	η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.32±0.02 3.28±0.03 η/η₀ 1.16±0.02	bound (histo) 0.38 0.46 0.43 0.43 0.43 0.43 0.37 0.35 frac. bound (histo)	nate bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.01 0.38±0.02 0.35±0.02 frac. bound (rates) 0.34±0.03	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.2 3.3±0.1 2.7±0.2 2.5±0.1 kon (s ⁻¹) 3.9±0.4	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.6±0.1 4.7±0.1 7.7±0.2	κ _p (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1 38.1±2.1 κ _p (nM) 31.0±2.9	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1 k _{on,1} (s ⁻¹) 2.6±0.4	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 0.7±0.0 1.1±0.1 1.1±0.1	koff,1 (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1 3.5±0.1 3.8±0.1 3.9±0.1 koff,1 (s ⁻¹) 6.4±0.1	k _{off,2} (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1 k _{off,2} (s ⁻¹) 24.8±1.7	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5 K _{b,1} (nM) 24.3±2.6	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9 K _{b,2} (nM) 132±9
C (g/ml) 0.05 0.101 0.201 0.252 0.302 0.302 0.402 Trieth C (g/ml) 0.045 0.09	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene total time (s) 4140 3308	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol c _{NCBD} (nM) 15.8±0.3 16.4±0.3	 η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 3.28±0.03 η/η₀ 1.16±0.02 1.29±0.02 	bound (histo) 0.38 0.46 0.43 0.43 0.43 0.43 0.37 0.35 frac. bound (histo)	nac. bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.01 0.38±0.02 0.35±0.02 frac. bound (rates) 0.34±0.03 0.39±0.03	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.3±0.1 2.7±0.2 2.5±0.1 kon (s ⁻¹) 3.9±0.4 4.5±0.3	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.4 5.0±0.5 4.5±0.2 4.3±0.1 4.7±0.1 k _{off} (s ⁻¹) 7.7±0.2 7.0±0.4	κ _p (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1 38.1±2.1 κ _p (nM) 31.0±2.9 25.3±2.1	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1 k _{on,1} (s ⁻¹) 2.6±0.4 3.2±0.2	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 0.7±0.0 kon,2 (s ⁻¹) 1.1±0.1 1.5±0.1	koff,1 (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1 3.5±0.1 3.9±0.1 koff,1 (s ⁻¹) 6.4±0.1 5.9±0.2	koff,2 (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1 koff,2 (s ⁻¹) 24.8±1.7 24.4±0.4	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5 K _{b,1} (nM) 24.3±2.6 19.6±1.2	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9 K _{b,2} (nM) 132±9 97±8
C (g/ml) 0.05 0.101 0.151 0.201 0.252 0.302 0.352 0.402 Triethy C (g/ml) 0.045 0.09 0.135	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene total time (s) 4140 3308 4640	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol fnM) 15.8±0.3 16.4±0.3 16.0±1.0	η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.32±0.02 3.28±0.03 η/η₀ 1.16±0.02 1.29±0.02 1.46±0.02	bound (histo) 0.38 0.46 0.43 0.43 0.43 0.43 0.37 0.35 frac. bound (histo) 0.33 0.39 0.39	nrate bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.43±0.01 0.43±0.01 0.38±0.02 0.35±0.02 frac. bound (rates) 0.34±0.03 0.34±0.03 0.39±0.03 0.41±0.02	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.1 2.7±0.2 2.5±0.1 kon (s ⁻¹) 3.9±0.4 4.5±0.3 4.2±0.1	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.6±0.1 4.7±0.1 7.7±0.2 7.0±0.4 6.1±0.3	κ _p (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 26.0±0.7 35.1±2.1 38.1±2.1 38.1±2.1 31.0±2.9 25.3±2.1 23.2±1.2	kon,1 (5 ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1 kon,1 (5 ⁻¹) 2.6±0.4 3.2±0.2 2.8±0.1	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 0.7±0.0 1.1±0.1 1.1±0.1 1.1±0.1	k _{off,1} (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 3.7±0.1 3.5±0.1 3.5±0.1 3.9±0.1 6.4±0.1 5.9±0.2 5.1±0.2	koff,2 (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1 koff,2 (s ⁻¹) 24.8±1.7 24.4±0.4 20.6±0.8	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5 K _{b,1} (nM) 24.3±2.6 19.6±1.2 18.4±0.5	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9 K _{b,2} (nM) 132±9 97±8 106±6
C (g/ml) 0.05 0.101 0.201 0.252 0.302 0.302 0.402 Triethy C (g/ml) 0.045 0.09 0.135 0.18	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene total time (s) 4140 3308 4640 4414	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol c _{NCBD} (nM) 15.8±0.3 16.4±0.3 16.0±1.0 16.4±0.6	 η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 3.28±0.03 η/η₀ 1.16±0.02 1.46±0.02 1.46±0.02 1.65±0.02 	bound (histo) 0.38 0.46 0.43 0.43 0.43 0.43 0.37 0.35 frac. bound (histo) 0.33 0.33 0.39 0.40	nat. bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.44±0.03 0.43±0.01 0.38±0.02 0.35±0.02 frac. bound (rates) 0.34±0.03 0.34±0.03 0.39±0.03 0.41±0.02 0.43±0.04	kon (S ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.3±0.1 2.7±0.2 2.5±0.1 kon (S ⁻¹) 3.9±0.4 4.2±0.1 3.9±0.4	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.7±0.1 7.7±0.2 7.7±0.2 7.0±0.4 6.1±0.3 5.1±0.1	κ _p (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 24.6±1.5 26.0±0.7 35.1±2.1 38.1±2.1 κ _p (nM) 31.0±2.9 25.3±2.1 23.2±1.2 21.2±1.2	k _{on,1} (s ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1 k _{on,1} (s ⁻¹) 2.6±0.4 3.2±0.2 2.8±0.1 2.6±0.4	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 0.7±0.0 1.1±0.1 1.1±0.1 1.1±0.1 1.1±0.1	koff,1 (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 4.0±0.1 3.7±0.1 3.5±0.1 3.9±0.1 6.4±0.1 5.9±0.2 5.1±0.2 4.1±0.1	koff,2 (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1 koff,2 (s ⁻¹) 24.8±1.7 24.4±0.4 20.6±0.8 18.4±1.4	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5 K _{b,1} (nM) 24.3±2.6 19.6±1.2 18.4±0.5 16.8±1.9	K0,2 (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9 K0,2 (nM) 132±9 97±8 106±6 100±9
C (g/ml) 0.05 0.101 0.151 0.201 0.252 0.302 0.302 0.402 Trieth C (g/ml) 0.045 0.09 0.135 0.18 0.225	time (s) 2681 2568 3989 3841 4248 2883 3868 3033 ylene total time (s) 4140 3308 4640 4414 4547	(nM) 16.3±0.2 18.8±0.3 18.4±0.4 18.1±0.5 19.0±0.3 20.0±0.1 21.1±0.4 20.5±0.4 glycol fnM) 15.8±0.3 16.4±0.3 16.4±0.3 16.4±0.6 16.6±0.2	 η/η₀ 1.16±0.06 1.28±0.02 1.51±0.02 1.74±0.00 2.07±0.01 2.39±0.01 2.82±0.02 3.28±0.03 η/η₀ 1.16±0.02 1.46±0.02 1.65±0.02 1.94±0.03	bound (histo) 0.38 0.46 0.43 0.43 0.43 0.43 0.37 0.37 0.35 0.35 0.39 0.39 0.39 0.40 0.43	nrate bound (rates) 0.39±0.03 0.46±0.03 0.46±0.02 0.43±0.01 0.43±0.01 0.38±0.02 0.35±0.02 frac. bound (rates) 0.34±0.03 0.39±0.03 0.41±0.02 0.43±0.04 0.45±0.02	kon (s ⁻¹) 4.5±0.3 4.9±0.2 4.7±0.2 3.9±0.2 3.5±0.1 2.7±0.2 2.5±0.1 kon (s ⁻¹) 3.9±0.4 4.5±0.3 4.2±0.1 3.9±0.4 3.9±0.4 3.9±0.4 3.9±0.4	k _{off} (s ⁻¹) 7.1±0.3 5.6±0.3 5.6±0.1 5.0±0.5 4.5±0.2 4.3±0.1 4.6±0.1 4.7±0.1 7.7±0.2 7.0±0.4 6.1±0.3 5.1±0.1	κ _p (nM) 25.6±1.8 21.7±1.6 21.9±1.1 23.2±2.6 26.0±0.7 35.1±2.1 38.1±2.1 38.1±2.1 31.0±2.9 25.3±2.1 23.2±1.2 21.4±2.0 20.0±1.1	kon,1 (5 ⁻¹) 3.1±0.2 3.3±0.2 3.1±0.3 2.5±0.2 2.3±0.2 2.2±0.1 1.8±0.2 1.7±0.1 kon,1 (5 ⁻¹) 2.6±0.4 3.2±0.2 2.8±0.1 2.6±0.4 2.6±0.4	kon,2 (s ⁻¹) 1.3±0.1 1.5±0.1 1.2±0.1 1.1±0.1 0.9±0.0 0.8±0.0 0.7±0.0 kon,2 (s ⁻¹) 1.1±0.1 1.5±0.1 1.1±0.1 1.5±0.1 1.1±0.1 1.1±0.1 1.1±0.1 1.1±0.1 1.1±0.1	koff,1 (s ⁻¹) 5.8±0.1 4.7±0.3 4.6±0.1 3.7±0.1 3.5±0.1 3.5±0.1 3.9±0.1 6.4±0.1 5.9±0.2 5.1±0.2 4.1±0.1 3.8±0.1	koff,2 (s ⁻¹) 24.2±1.9 19.6±0.8 18.4±0.7 18.0±1.3 14.9±0.9 14.5±1.6 14.9±1.0 14.7±1.1 koff,2 (s ⁻¹) 24.8±1.7 24.4±0.4 20.6±0.8 18.4±1.4 16.9±1.0	K _{b,1} (nM) 20.0±0.9 16.9±0.6 17.3±1.1 18.3±1.0 19.7±1.9 20.8±0.9 27.9±1.8 30.2±1.5 K _{b,1} (nM) 24.3±2.6 19.6±1.2 18.4±0.5 16.8±1.9 15.7±1.0	K _{b,2} (nM) 106±11 87±9 101±5 107±14 118±7 133±16 163±11 161±9 K _{b,2} (nM) 132±9 97±8 106±6 100±9 94±6

0.315	3723	17.7±0.5	2.59±0.02	0.37	0.38±0.02	2.7±0.1	4.4±0.1	29.4±1.6	1.8±0.2	0.7±0.0	3.7±0.1	15.9±1.0	23.4±1.9	145±5
0.36	3771	19.0±0.5	3.15±0.09	0.35	0.36±0.02	2.2±0.1	4.0±0.1	34.4±2.3	1.5±0.1	0.7±0.1	3.4±0.1	15.5±2.7	26.6±1.5	151±14
PEG 20	00													
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	k_{off} (S ⁻¹)	K ₀(nM)	k on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$\boldsymbol{k}_{\text{off,1}}(\text{s}^{-1})$	$k_{\rm off,2}$ (S ⁻¹)	К_{D,1} (n М)	К_{D,2} (nM)
0.045	4409	15.6±0.3	1.13±0.03	0.35	0.36±0.02	3.9±0.2	7.0±0.2	27.8±1.8	2.5±0.2	1.0±0.0	5.6±0.2	22.1±1.6	22.2±1.8	128±10
0.09	4776	16.8±0.4	1.34±0.01	0.37	0.38±0.02	3.9±0.2	6.5±0.1	27.7±1.7	2.7±0.2	1.0±0.0	5.4±0.1	21.5±1.0	21.9±1.5	125±5
0.135	2727	16.6±0.3	1.52±0.02	0.43	0.43±0.03	4.3±0.2	5.7±0.2	21.7±1.5	2.9±0.1	1.2±0.1	4.6±0.2	19.0±1.3	17.2±0.9	99±5
0.18	3397	17.3±0.2	1.75±0.03	0.46	0.46±0.03	4.3±0.1	5.0±0.4	20.3±1.8	2.9±0.3	1.1±0.1	4.2±0.2	17.0±0.9	16.0±1.3	93±9
0.225	3622	15.8±0.3	2.06±0.00	0.46	0.46±0.04	3.9±0.3	4.6±0.1	18.5±1.4	2.6±0.4	0.9±0.1	3.8±0.1	15.3±1.3	14.8±1.9	96±6
0.27	4964	15.2±0.4	2.47±0.01	0.46	0.46±0.02	2.7±0.1	3.2±0.1	17.7±1.1	1.8±0.1	0.7±0.1	2.6±0.1	12.0±0.7	14.0±1.1	89±10
0.315	4477	17.5±0.7	2.88±0.03	0.45	0.45±0.04	2.8±0.2	3.4±0.2	21.2±2.0	1.9±0.3	0.7±0.0	2.9±0.1	11.2±1.3	16.9±2.0	108±18
0.36	4293	16.8±0.5	3.53±0.01	0.48	0.48±0.04	2.6±0.2	2.9±0.2	18.5±1.6	1.7±0.2	0.6±0.0	2.4±0.1	10.1±0.6	14.8±1.4	100±11
PEG 40	00					_			_					
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	<i>k</i> on (s⁻¹)	k off (S⁻¹)	K ₀(nM)	k on,1 (S ⁻¹)	$k_{on,2}$ (s ⁻¹)	$\boldsymbol{k}_{off,1}(s^{-1})$	$k_{\rm off,2}$ (s ⁻¹)	К_{D,1} (n М)	К_{D,2} (nM)
0.051	3059	20.2±1.0	1.31±0.02	0.37	0.37±0.03	3.9±0.3	6.6±0.2	34.0±3.2	2.5±0.3	1.1±0.1	5.2±0.2	22.2±3.0	26.9±2.1	148±20
0.101	3049	17.5±0.4	1.61±0.00	0.35	0.36±0.04	3.0±0.3	5.4±0.3	31.5±3.3	2.0±0.3	0.8±0.0	4.3±0.1	18.9±2.2	24.8±2.8	144±18
0.152	3404	17.8±0.5	2.03±0.01	0.42	0.42±0.03	3.0±0.2	4.1±0.2	24.4±1.9	1.9±0.1	0.7±0.0	3.3±0.1	14.1±0.6	19.5±0.8	127±10
0.203	3063	17.8±0.3	2.54±0.07	0.44	0.45±0.03	2.7±0.1	3.3±0.2	22.0±1.6	1.7±0.2	0.6±0.0	2.6±0.1	12.1±1.3	17.7±1.7	122±11
0.254	3090	19.9±0.3	3.01±0.04	0.50	0.51±0.04	3.0±0.2	2.9±0.1	19.3±1.7	2.0±0.3	0.7±0.1	2.4±0.1	9.7±1.0	15.6±1.1	105±6
0.305	4161	17.2±0.7	3.82±0.09	0.48	0.48±0.04	1.8±0.1	1.9±0.1	18.8±1.5	1.1±0.1	0.4±0.0	1.5±0.0	7.4±0.6	15.2±1.3	113±4
0.355	4391	20.1±0.4	4.77±0.09	0.53	0.53±0.07	1.9±0.2	1.7±0.1	17.7±2.1	1.2±0.2	0.4±0.0	1.3±0.0	6.2±0.7	14.3±1.4	112±11
0.406	2798	19.0±0.2	5.77±0.01	0.46	0.47±0.06	1.2±0.1	1.3±0.1	21.8±2.8	0.7±0.2	0.3±0.0	1.1±0.1	5.2±1.0	17.5±3.3	127±32
PEG 10	000													
PEG 10 <i>c</i> (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	k off (S ⁻¹)	К _D (nM)	k on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$\boldsymbol{k}_{off,1}(S^{-1})$	$k_{off,2}$ (S ⁻¹)	К_{D,1} (nM)	К_{D,2} (nM)
PEG 10 <i>c</i> (g/ml) 0.045	total time (s) 3836	с_{NCBD} (nM) 15.3±0.2	η/η ₀ 1.32±0.02	frac. bound (histo) 0.41	frac. bound (rates) 0.42±0.03	<i>k</i> _{on} (5 ⁻¹) 4.4±0.2	<i>k</i> _{off} (s ⁻¹) 6.2±0.2	<i>K</i> _D (nM) 21.5±1.4	<i>k</i> _{on,1} (S ⁻¹) 3.0±0.2	<i>k</i> _{on,2} (s ⁻¹) 1.4±0.1	k _{off,1} (S ⁻¹) 5.1±0.1	<i>k</i> _{off,2} (s ⁻¹) 21.8±1.1	<i>K</i> _{D,1} (nM) 16.7±1.1	К_{р,2}(nM) 84±3
PEG 10 <i>c</i> (g/ml) 0.045 0.09	total time (s) 3836 3451	с _{NCBD} (nM) 15.3±0.2 16.5±0.6	n/n₀ 1.32±0.02 1.69±0.00	frac. bound (histo) 0.41 0.50	frac. bound (rates) 0.42±0.03 0.50±0.02	k _{on} (s ⁻¹) 4.4±0.2 5.4±0.2	<i>k</i> _{off} (s ⁻¹) 6.2±0.2 5.3±0.1	K _D (nM) 21.5±1.4 16.3±0.5	<i>k</i> _{on,1} (s ⁻¹) 3.0±0.2 3.6±0.1	<i>k</i> _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2	<i>k</i> _{off,1} (5 ⁻¹) 5.1±0.1 4.3±0.1	<i>k</i> _{off,2} (s ⁻¹) 21.8±1.1 20.4±2.1	κ _{D,1} (nM) 16.7±1.1 12.6±0.4	K _{D,2} (nM) 84±3 71±7
PEG 10 c (g/ml) 0.045 0.09 0.135	total time (s) 3836 3451 3853	с _{мсвр} (nM) 15.3±0.2 16.5±0.6 17.0±0.5	η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00	frac. bound (histo) 0.41 0.50 0.56	frac. bound (rates) 0.42±0.03 0.50±0.02 0.56±0.02	k _{on} (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1	<i>k</i> _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2	K _D (nM) 21.5±1.4 16.3±0.5 13.4±0.8	k _{on,1} (s ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1	k _{off,1} (s ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2	k _{off,2} (5 ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8	K _{D,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6	K _{D,2} (nM) 84±3 71±7 57±7
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18	total time (s) 3836 3451 3853 3515	<mark>С_{NСВБ} (nM)</mark> 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5	η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06	frac. bound (histo) 0.41 0.50 0.56 0.60	frac. bound (rates) 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05	k _{on} (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1	K _D (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7	<i>k</i> _{on,1} (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1	<i>k</i> _{off,1} (s ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1	<i>k</i> _{off,2} (s ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6	K _{0,2} (nM) 84±3 71±7 57±7 51±5
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225	total time (s) 3836 3451 3853 3515 4691	С _{NCBD} (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5 15.4±0.3	η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01	frac. bound (histo) 0.41 0.50 0.56 0.60 0.61	frac. bound (rates) 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03	k _{on} (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2	<i>k</i> _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1	K _D (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6	k _{on,1} (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 1.1±0.1	<i>k</i> _{off,1} (5 ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1	k _{off,2} (s ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4	K _{D,2} (nM) 84±3 71±7 57±7 51±5 45±4
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27	b00 total time (s) 3836 3451 3853 3515 4691 4981	С NCBD (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5 15.4±0.3 15.8±0.4	n/n₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09	frac. bound 0.41 0.50 0.56 0.60 0.61 0.63	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03 0.63±0.05	k on (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1	K _b (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9	<i>k</i> _{on,1} (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 1.1±0.1 0.7±0.1	<i>k</i> _{off,1} (s ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1	<i>k</i> _{off,2} (s ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6	K _{b,2} (nM) 84±3 71±7 57±7 51±5 45±4 53±7
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315	b00 total time (s) 3836 3451 3853 3515 4691 4981 4181	С _{NCBD} (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5 15.4±0.3 15.8±0.4 14.7±0.7	n/n₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45	frac. bound 0.41 0.50 0.56 0.60 0.61 0.63 0.68	frac. bound (rates) 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03 0.63±0.05 0.69±0.08	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3	<pre>k_{off} (s⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1</pre>	K _b (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7	<pre>k_{on,1} (5⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1</pre>	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 1.1±0.1 0.7±0.1 0.8±0.1	<i>k</i> _{off,1} (s ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0	k _{off,2} (s ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6 5.1±0.3	K _{b,2} (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20	total time (s) 3836 3451 3853 3515 4691 4981 4181 550	Смсвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5 15.4±0.3 15.8±0.4 14.7±0.7	n/n₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45	frac. bound (histo) 0.41 0.50 0.56 0.60 0.61 0.63 0.68	frac. bound (rates) 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03 0.63±0.05 0.69±0.08	kon (S ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1	K _b (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7	k _{on,1} (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 1.1±0.1 0.7±0.1 0.8±0.1	koff,1 (S ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0	koff,2 (s ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6 5.1±0.3	K _{b,2} (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml)	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s)	Смсвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5 15.4±0.3 15.8±0.4 14.7±0.7 Смсвр (nM)	η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀	frac. bound 0.41 0.50 0.61 0.63 0.63 0.68 frac. bound histo)	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.61±0.03 0.61±0.03 0.63±0.05 0.69±0.08	kon (S ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 kon (S ⁻¹)	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 k _{off} (s ⁻¹)	K _D (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 K _D (nM)	k _{on,1} (s ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 k _{on,1} (s ⁻¹)	k _{on,2} (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 1.1±0.1 0.7±0.1 0.8±0.1 k _{on,2} (s ⁻¹)	koff,1 (S ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (S ⁻¹)	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹)	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.5±0.4 7.6±0.6 5.1±0.3 K _{b,1} (nM)	К _{D,2} (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 К _{D,2} (nM)
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051	total total time (s) 3836 3451 3853 3515 4691 4981 4181 50 time (s) 3606	Смсвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.5 15.4±0.3 15.8±0.4 14.7±0.7 Смсвр (nM) 18.1±0.5	η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀ 1.50±0.08	frac. bound 0.41 0.50 0.56 0.61 0.63 0.68 frac. bound histop	frac. bound (rates) 0.42±0.03 0.50±0.02 0.66±0.05 0.61±0.03 0.63±0.05 0.69±0.08 frac. bound (rates) 0.46±0.03	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 kon (s ⁻¹) 4.5±0.3	koff (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 koff (s ⁻¹) 5.2±0.3	κ _b (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.5±0.9 6.5±0.7 κ _b (nM) 21.1±1.7	kon,1 (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 Kon,1 (5 ⁻¹) 2.9±0.4	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 kon,2 (s ⁻¹) 1.4±0.2	koff,1 (5 ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 0.9±0.0 koff,1 (5 ⁻¹) 4.1±0.2	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6 5.1±0.3 K _{b,1} (nM) 16.4±2.3	K _{D,2} (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 K _{D,2} (nM) 87±9
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186	 Смсвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 15.4±0.3 15.4±0.3 14.7±0.7 Смсвр (nM) 18.1±0.5 19.2±0.4 	η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀ 1.50±0.08 2.28±0.12	frac. bound 0.41 0.50 0.56 0.60 0.61 0.63 0.68 frac. bound histo) 0.41	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.61±0.03 0.63±0.05 0.69±0.08 frac. bound (rates) 0.46±0.03	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 kon (s ⁻¹) 4.5±0.3 3.8±0.2	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 5.2±0.3 4.4±0.2	Kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 Kb (nM) 21.1±1.7 22.4±1.6	kon,1 (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (5 ⁻¹) 2.9±0.4 2.5±0.4	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 kon,2 (s ⁻¹) 1.4±0.2 1.3±0.1	koff,1 (S ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (S ⁻¹) 4.1±0.2 3.6±0.2	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.3 K _{b,1} (nM) 16.4±2.3 17.3±2.2	Kb,2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kb,2 (nM) 87±9 92±10
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186 2287	 Съксвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 15.4±0.3 15.4±0.3 15.4±0.4 14.7±0.7 Съксвр (nM) 18.1±0.5 19.2±0.4 19.6±0.1 	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀ 1.50±0.08 2.28±0.12 2.16±0.10 	frac. bound 0.41 0.50 0.56 0.60 0.61 0.63 0.68 frac. bound 0.46 0.46 0.46	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03 0.63±0.05 0.69±0.08 dracber.obound 0.40±0.03 0.40±0.03 0.40±0.03 0.46±0.03 0.46±0.04	kon (S ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 4.5±0.3 3.8±0.2 4.2±0.2	koff (S ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 5.2±0.3 4.4±0.2 4.9±0.5	κ _b (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 k _b (nM) 21.1±1.7 22.4±1.6 22.9±2.7	kon,1 (S ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (S ⁻¹) 2.9±0.4 2.5±0.4 2.7±0.2	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 kon,2 (s ⁻¹) 1.4±0.2 1.3±0.1 1.2±0.2	koff,1 (5 ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (5 ⁻¹) 4.1±0.2 3.6±0.2 3.9±0.1	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6 5.1±0.3 K _{b,1} (nM) 16.4±2.3 17.3±2.2 18.0±0.9	Kb,2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kb,2 (nM) 87±9 92±10 100±8
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101 0.152	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 50 total time (s) 3606 4186 2287 3089	 Смсвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.3 15.4±0.3 15.4±0.3 14.7±0.7 Смсвр (nM) 18.1±0.5 19.2±0.4 19.6±0.1 16.1±0.2 	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀ 1.50±0.08 2.28±0.12 2.16±0.10 3.34±0.11 	frac. bound 0.41 0.50 0.56 0.61 0.63 0.63 0.64 0.45 0.46 0.45 0.46	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.61±0.03 0.61±0.03 0.63±0.05 0.69±0.08 frac. bound (rates) 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 k on (s ⁻¹) 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2	koff (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 5.2±0.3 4.4±0.2 4.9±0.5 2.9±0.1	Kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 K b (nM) 21.1±1.7 22.4±1.6 22.9±2.7 14.7±1.0	kon,1 (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (5 ⁻¹) 2.9±0.4 2.7±0.2 2.1±0.2	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 kon,2 (s ⁻¹) 1.4±0.2 1.3±0.1 0.9±0.1	koff,1 (S ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (S ⁻¹) 4.1±0.2 3.6±0.2 3.9±0.1 2.3±0.1	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 12.1±1.2	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.3 K _{b,1} (nM) 16.4±2.3 17.3±2.2 18.0±0.9 11.4±0.7	Kbp2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kbp2 (nM) 87±9 92±10 100±8 75±11
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101 0.101 0.152 0.203	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186 2287 3089 3420	 Съсево (пМ) 15.3±0.2 16.5±0.6 17.0±0.5 16.5±0.3 15.4±0.3 15.4±0.3 14.7±0.7 Съсево (пМ) 18.1±0.5 19.2±0.4 19.6±0.1 16.1±0.2 17.6±0.9 	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀ 1.50±0.08 2.28±0.12 2.16±0.10 3.34±0.11 4.67±0.37 	frac. bound 0.41 0.50 0.56 0.60 0.61 0.63 0.68 frac. bound 0.46 0.45 0.46 0.45 0.46 0.45 0.46	frac. bound (rates) 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03 0.63±0.05 0.69±0.08 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03	kon (S ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2 2.7±0.2	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 5.2±0.3 4.4±0.2 4.9±0.5 2.9±0.1 1.8±0.1	κ _b (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 21.1±1.7 22.4±1.6 22.9±2.7 14.7±1.0 11.8±1.0	kon,1 (S ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (S ⁻¹) 2.9±0.4 2.5±0.4 2.7±0.2 1.8±0.5	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1	koff,1 (5 ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (5 ⁻¹) 4.1±0.2 3.6±0.2 3.9±0.1 2.3±0.1 1.5±0.0	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 12.1±1.2 7.4±0.9	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6 5.1±0.3 K _{b,1} (nM) 16.4±2.3 17.3±2.2 18.0±0.9 11.4±0.7 9.1±2.1	Kb,2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kb,2 (nM) 87±9 92±10 100±8 75±11 56±6
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101 0.152 0.203 0.253	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186 2287 3089 3420 3490	Смсвр (nM) 15.3±0.2 16.5±0.6 17.0±0.5 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 14.7±0.7 CMCBD (nM) 18.1±0.5 19.2±0.4 19.6±0.1 16.1±0.2 17.6±0.9 10.9±0.8	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 3.64±0.01 4.91±0.09 6.23±0.45 1.50±0.08 2.28±0.12 2.16±0.10 3.34±0.11 4.67±0.37 6.30±0.00 	frac. bound 0.41 0.50 0.54 0.63 0.63 0.64 0.45 0.45 0.45 0.45 0.45 0.52 0.50 0.52 0.50	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.61±0.03 0.61±0.03 0.63±0.05 0.69±0.08 dracbudge 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.50±0.07	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 kon (s ⁻¹) 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2 2.7±0.2 1.1±0.1	koff (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 \$.2±0.3 4.4±0.2 4.9±0.5 2.9±0.1 1.8±0.1	kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 kb (nM) 21.1±1.7 22.4±1.6 22.9±2.7 14.7±1.0 11.8±1.0 11.0±1.5	kon,1 (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (5 ⁻¹) 2.9±0.4 2.5±0.4 2.7±0.2 2.1±0.2 1.8±0.5 0.7±0.1	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 1.4±0.2 1.3±0.1 0.9±0.1 0.9±0.1 0.8±0.1	koff,1 (S ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (S ⁻¹) 4.1±0.2 3.6±0.2 3.9±0.1 2.3±0.1 1.5±0.0 0.9±0.0	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 12.1±1.2 7.4±0.9	Kb,1 (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.5±0.4 7.6±0.6 5.1±0.3 Kb,1 (nM) 16.4±2.3 17.3±2.2 18.0±0.9 11.4±0.7 9.1±2.1 8.9±0.8	Kbp2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 kbp2 (nM) 87±9 92±10 100±8 75±11 56±6 72±6
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101 0.101 0.152 0.203 0.253 PEG 40	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186 2287 3089 3420 3490 3420 3490	 Късър (nM) 15.3±0.2 16.5±0.6 17.0±0.5 15.4±0.3 16.1±0.2 17.6±0.9 10.9±0.8 	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.01 4.91±0.09 6.23±0.45 η/η₀ 1.50±0.08 2.28±0.12 2.16±0.10 3.34±0.11 4.67±0.37 6.30±0.00 	frac. bound 0.41 0.50 0.56 0.60 0.61 0.63 0.63 0.64 0.63 0.64 0.45 0.46 0.45 0.46 0.52 0.60 0.52 0.50	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.60±0.05 0.61±0.03 0.63±0.05 0.69±0.08 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.52±0.04 0.50±0.05	kon (S ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2 1.1±0.1	k _{off} (s ⁻¹) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 \$.2±0.1 4.9±0.5 2.9±0.1 1.8±0.1 1.8±0.1	Kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 Kb (nM) 21.1±1.7 22.4±1.6 22.9±2.7 14.7±1.0 11.8±1.0 11.0±1.5	kon,1 (S ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (S ⁻¹) 2.9±0.4 2.5±0.4 2.7±0.2 1.8±0.5 0.7±0.1	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 1.4±0.2 1.3±0.1 1.2±0.2 0.9±0.1 0.2±0.0	koff,1 (5 ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 4.1±0.2 3.6±0.2 3.6±0.2 3.9±0.1 2.3±0.1 1.5±0.0 0.9±0.0	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 2.1±1.2 7.4±0.9 4.4±0.6	K _{b,1} (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.6 5.1±0.3 K _{b,1} (nM) 16.4±2.3 17.3±2.2 18.0±0.9 11.4±0.7 9.1±2.1 8.9±0.8	K _{b,2} (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 K _{b,2} (nM) 87±9 92±10 100±8 75±11 56±6 72±6
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101 0.152 0.203 0.253 PEG 46 c (g/ml)	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186 2287 3089 3420 3490 3490 total time (s)	 Смсвр (nM) 15.3±0.2 16.5±0.5 17.0±0.5 15.4±0.3 15.4±0.3 14.7±0.7 Смсвр (nM) 18.1±0.5 19.2±0.4 19.6±0.1 16.1±0.2 17.6±0.9 10.9±0.8 Смсвр (nM) 	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 3.64±0.01 4.91±0.09 6.23±0.45 1.50±0.08 2.28±0.12 2.16±0.10 3.34±0.11 4.67±0.37 6.30±0.00 η/η₀ 	frac. bound 0.41 0.50 0.54 0.56 0.61 0.63 0.63 0.64 0.45 0.46 0.45 0.46 0.52 0.60 0.52 0.50 frac. bound histo)	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.61±0.03 0.61±0.03 0.63±0.05 0.69±0.08 frac. bound 0.46±0.03 0.46±0.03 0.46±0.03 0.46±0.03 0.52±0.04 0.50±0.07 0.50±0.07	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2 2.7±0.2 1.1±0.1 kon (s ⁻¹)	koff (S-1) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 \$.2±0.3 4.4±0.2 4.9±0.5 2.9±0.1 1.8±0.1 1.1±0.1	kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 kb (nM) 21.1±1.7 22.9±2.7 14.7±1.0 11.8±1.0 11.0±1.5	kon,1 (5 ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.3 2.3±0.1 1.8±0.2 1.6±0.1 kon,1 (5 ⁻¹) 2.9±0.4 2.7±0.2 2.1±0.2 1.8±0.5 0.7±0.1	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 kon,2 (s ⁻¹) 1.4±0.2 1.3±0.1 0.9±0.1 0.8±0.1 0.2±0.0	koff,1 (S ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (S ⁻¹) 4.1±0.2 3.6±0.2 3.9±0.1 2.3±0.1 1.5±0.0 0.9±0.0	koff,2 (S ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (S ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 12.1±1.2 7.4±0.9 4.4±0.6	Kb,1 (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.6±0.3 Kb,1 (nM) 16.4±2.3 17.3±2.2 18.0±0.9 11.4±0.7 9.1±2.1 8.9±0.8 Kb,1 (nM)	Kbp2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kbp2 (nM) 87±9 92±10 100±8 75±11 56±6 72±6
PEG 10 c (g/ml) 0.045 0.09 0.135 0.18 0.225 0.27 0.315 PEG 20 c (g/ml) 0.051 0.101 0.101 0.101 0.152 0.203 0.253 PEG 40 c (g/ml)	000 total time (s) 3836 3451 3853 3515 4691 4981 4181 050 total time (s) 3606 4186 2287 3089 3420 3400 34	Съсво 15.3±0.2 16.5±0.6 17.0±0.5 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 15.4±0.3 14.7±0.7 14.7±0.7 13.1±0.5 19.2±0.4 19.6±0.1 10.9±0.8 10.9±0.8 6ъсво гъ.8±0.4	 η/η₀ 1.32±0.02 1.69±0.00 2.18±0.00 2.85±0.06 3.64±0.11 4.91±0.09 6.23±0.45 1.50±0.08 2.28±0.12 2.16±0.10 3.34±0.11 4.67±0.37 6.30±0.00 ή/η₀ 1.31±0.01 	frac. bound 0.41 0.50 0.54 0.56 0.61 0.63 0.63 0.64 0.63 0.64 0.63 0.64 0.45 0.46 0.45 0.46 0.52 0.60 0.50 0.50 frac. by frac. by	frac. bound 0.42±0.03 0.50±0.02 0.56±0.02 0.61±0.03 0.63±0.05 0.63±0.05 0.69±0.08 0.46±0.03 0.46±0.03 0.46±0.03 0.52±0.04 0.50±0.05 <th>kon (s⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2 2.7±0.2 1.1±0.1 kon (s⁻¹) 5.3±0.2</th> <th>koff (S-1) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 \$.2±0.3 4.4±0.2 4.9±0.5 2.9±0.1 1.8±0.1 1.1±0.1 \$koff (S^-1) 6.7±0.3</th> <th>kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 22.4±1.6 22.9±2.7 14.7±1.0 11.8±1.0 11.0±1.5 Kb (nM)</th> <th>kon,1 (S⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.1 1.8±0.2 1.6±0.1 2.9±0.4 2.9±0.4 2.9±0.4 2.9±0.4 0.7±0.1 1.8±0.5 0.7±0.1 8kon,1 (S⁻¹)</th> <th>kon,2 (s⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 1.4±0.2 1.3±0.1 1.3±0.1 0.9±1.1 0.2±0.0 kon,2 (s⁻¹) 1.5±0.1</th> <th>koff,1 (5⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (5⁻¹) 3.6±0.2 3.6±0.2 3.9±0.1 1.5±0.0 0.9±0.0 koff,1 (5⁻¹) 5.3±0.1</th> <th>koff,2 (5⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (5⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 4.4±0.6 koff,2 (5⁻¹) 2.5±0.7</th> <th>Kb,1 (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.5±0.4 7.5±0.4 7.6±0.6 11.4±0.7 9.1±2.1 8.9±0.8 Kb,1 (nM)</th> <th>Kb,2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kb,2 (nM) 87±9 92±10 100±8 75±11 56±6 72±6 Kb,2 (nM) 86±7</th>	kon (s ⁻¹) 4.4±0.2 5.4±0.2 4.7±0.1 5.0±0.3 3.4±0.2 2.9±0.2 2.6±0.3 4.5±0.3 3.8±0.2 4.2±0.2 3.2±0.2 2.7±0.2 1.1±0.1 kon (s ⁻¹) 5.3±0.2	koff (S-1) 6.2±0.2 5.3±0.1 3.7±0.2 3.3±0.1 2.2±0.1 1.8±0.1 1.2±0.1 \$.2±0.3 4.4±0.2 4.9±0.5 2.9±0.1 1.8±0.1 1.1±0.1 \$koff (S^-1) 6.7±0.3	kb (nM) 21.5±1.4 16.3±0.5 13.4±0.8 10.9±0.7 9.8±0.6 9.5±0.9 6.5±0.7 22.4±1.6 22.9±2.7 14.7±1.0 11.8±1.0 11.0±1.5 Kb (nM)	kon,1 (S ⁻¹) 3.0±0.2 3.6±0.1 3.2±0.1 3.2±0.1 1.8±0.2 1.6±0.1 2.9±0.4 2.9±0.4 2.9±0.4 2.9±0.4 0.7±0.1 1.8±0.5 0.7±0.1 8kon,1 (S ⁻¹)	kon,2 (s ⁻¹) 1.4±0.1 1.7±0.2 1.6±0.1 1.5±0.1 0.7±0.1 0.8±0.1 1.4±0.2 1.3±0.1 1.3±0.1 0.9±1.1 0.2±0.0 kon,2 (s ⁻¹) 1.5±0.1	koff,1 (5 ⁻¹) 5.1±0.1 4.3±0.1 3.0±0.2 2.6±0.1 1.7±0.1 1.4±0.1 0.9±0.0 koff,1 (5 ⁻¹) 3.6±0.2 3.6±0.2 3.9±0.1 1.5±0.0 0.9±0.0 koff,1 (5 ⁻¹) 5.3±0.1	koff,2 (5 ⁻¹) 21.8±1.1 20.4±2.1 14.3±0.8 12.4±0.9 9.1±0.6 6.8±0.4 4.9±0.2 koff,2 (5 ⁻¹) 18.5±1.7 16.8±1.6 17.7±1.0 4.4±0.6 koff,2 (5 ⁻¹) 2.5±0.7	Kb,1 (nM) 16.7±1.1 12.6±0.4 10.4±0.6 8.5±0.6 7.5±0.4 7.5±0.4 7.5±0.4 7.6±0.6 11.4±0.7 9.1±2.1 8.9±0.8 Kb,1 (nM)	Kb,2 (nM) 84±3 71±7 57±7 51±5 45±4 53±7 34±3 Kb,2 (nM) 87±9 92±10 100±8 75±11 56±6 72±6 Kb,2 (nM) 86±7

0.084	2801	14.5±0.3	2.47±0.15	0.56	0.56±0.03	5.7±0.2	4.5±0.3	11.4±0.8	3.7±0.3	1.9±0.1	3.5±0.1	16.7±1.3	8.8±0.6	46±4
0.112	3052	13.9±0.1	3.08±0.03	0.59	0.59±0.03	5.9±0.2	4.1±0.2	9.6±0.6	3.9±0.2	2.1±0.1	3.2±0.1	16.6±0.9	7.3±0.4	39±4
0.141	3669	14.6±0.3	3.90±0.14	0.70	0.70±0.03	6.1±0.2	2.6±0.1	6.3±0.3	4.0±0.3	2.3±0.1	2.0±0.1	9.7±0.7	4.8±0.6	22±2
0.169	4279	14.0±0.9	4.76±0.10	0.71	0.74±0.04	6.1±0.3	2.2±0.1	4.9±0.3	3.8±0.3	2.4±0.2	1.6±0.1	7.9±0.6	3.7±0.2	16±2
PEG 60	000													
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	k off (S ⁻¹)	K ₀(nM)	<i>k</i> on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$k_{off,1}$ (S ⁻¹)	$k_{off,2}(s^{-1})$	К _{D,1} (nM)	К_{D,2} (n M)
0.034	3917	17.8±0.6	1.49±0.00	0.48	0.48±0.03	6.1±0.3	6.5±0.3	19.1±1.2	3.9±0.1	1.8±0.1	5.1±0.2	22.9±1.4	14.8±0.6	81±7
0.068	2665	18.7±0.3	2.16±0.02	0.55	0.56±0.02	6.7±0.2	5.4±0.2	14.9±0.7	4.5±0.3	2.3±0.1	4.3±0.1	20.7±0.7	11.4±0.7	61±4
0.101	3714	17.2±0.3	3.13±0.02	0.65	0.65±0.02	7.5±0.2	4.0±0.1	9.1±0.3	5.1±0.2	2.5±0.1	3.2±0.1	15.8±0.7	6.9±0.3	40±2
0.135	3504	16.4±1.1	4.18±0.07	0.68	0.69±0.03	6.4±0.2	2.8±0.1	7.2±0.3	4.3±0.3	2.4±0.1	2.2±0.1	12.4±2.1	5.4±0.3	31±7
0.169	2823	11.4±0.4	5.17±0.24	0.68	0.69±0.03	4.7±0.1	2.1±0.1	5.1±0.3	3.0±0.2	2.0±0.2	1.5±0.1	8.6±0.9	3.8±0.4	18±4
PEG 35	5000													
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	k off (S ⁻¹)	К _D (nM)	k on,1 (S ⁻¹)	k on,2 (S ⁻¹)	$\boldsymbol{k}_{off,1}(S^{-1})$	k off,2 (S ⁻¹)	К_{D,1} (n М)	К_{D,2} (n M)
0.02	3461	16.4±0.1	1.45±0.09	0.45	0.46±0.02	5.5±0.2	6.5±0.4	19.3±1.4	3.7±0.1	1.9±0.1	5.1±0.2	24.8±1.6	14.8±0.7	78±7
0.041	4633	16.9±0.7	1.93±0.11	0.50	0.51±0.04	6.6±0.4	6.4±0.3	16.3±1.3	4.4±0.4	2.4±0.2	5.0±0.2	25.1±1.3	12.4±1.0	65±10
0.062	2818	14.6±0.0	2.46±0.08	0.51	0.52±0.04	6.0±0.3	5.6±0.3	13.5±1.0	4.0±0.2	2.1±0.1	4.4±0.2	22.8±1.2	10.3±0.4	56±4
0.082	4258	14.8±0.5	3.27±0.07	0.57	0.58±0.05	6.2±0.4	4.6±0.4	10.9±1.2	4.1±0.4	2.2±0.1	3.6±0.1	18.7±0.5	8.3±0.7	46±3
0.102	3084	13.2±0.8	3.97±0.17	0.56	0.56±0.01	5.4±0.1	4.2±0.2	10.3±0.4	3.5±0.1	1.9±0.1	3.2±0.1	18.4±1.8	7.8±0.3	46±6
0.123	3006	10.3±0.2	5.02±0.32	0.62	0.65±0.02	6.4±0.1	3.4±0.1	5.5±0.2	4.1±0.1	2.3±0.1	2.6±0.0	15.5±1.5	4.2±0.1	25±1

Dextran 40K											
c (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (s ⁻¹)	k_{off} (s⁻¹)	K ₀ (nM)			
0	7315	9.8	0.84	0.21	0.21±0.01	1.8±0.1	6.6±0.5	35.9±2.9			
0.09	4533	22.9±1.3	2.26±0.21	0.5	0.50±0.03	5.3±0.2	5.2±0.1	22.8±1.2			
PVA 4	40K										
c (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (s ⁻¹)	k off (S⁻¹)	K ₀(nM)			
0	5410	11.6±0.2	1.02±0.11	0.22	0.228±0.004	2.27±0.03	7.7±0.1	39.2±0.9			
0.045	6174	22.1±0.8	1.83±0.10	0.41	0.42±0.02	4.7±0.1	6.6±0.3	31.1±1.5			
0.09	4244	22.5±0.6	2.70±0.06	0.48	0.49±0.04	5.3±0.4	5.6±0.2	23.5±1.9			
PVP 4	ОК										
C (g/ml)	total time (s)	с_{NCBD} (nM)	η/η₀	frac. bound (histo)	frac. bound (rates)	k on (S ⁻¹)	k off (S ⁻¹)	K ₀ (nM)			
0	6697	16.4±0.8	1.14±0.10	0.34	0.33±0.02	3.4±0.1	6.9±0.2	32.7±1.6			
0.09	5832	23.4±0.3	2.55±0.09	0.46	0.46±0.01	4.9±0.1	5.9±0.3	28.0±1.4			
0.18	5342	25±0.7	4.76±0.18	0.48	0.48±0.01	3.7±0.1	4.1±0.1	27.5±0.8			
0.18	3265	22.9±0.4	4.91±0.13	0.45	0.44±0.02	3.2±0.1	4.0±0.2	28.8±1.9			

Supporting Information References

- 1. S Kuga (1981) Pore-Size Distribution Analysis of Gel Substances by Size Exclusion Chromatography. *Journal of Chromatography* 206:449-461.
- 2. M Hosek & JX Tang (2004) Polymer-induced bundling of F actin and the depletion force. *Phys Rev E Stat Nonlin Soft Matter Phys* 69:051907.
- 3. K Devanand & JC Selser (1991) Asymptotic-Behavior and Long-Range Interactions in Aqueous-Solutions of Poly(Ethylene Oxide). *Macromolecules* 24:5943-5947.
- 4. F Sturzenegger, F Zosel, ED Holmstrom, KJ Buholzer, DE Makarov, D Nettels, & B Schuler (2018) Transition path times of coupled folding and binding reveal the formation of an encounter complex. *Nat. Commun.* 9:4708.