348 research outputs found

    A review of k-NN algorithm based on classical and Quantum Machine Learning

    Get PDF
    [EN] Artificial intelligence algorithms, developed for traditional computing, based on Von Neumann’s architecture, are slow and expen- sive in terms of computational resources. Quantum mechanics has opened up a new world of possibilities within this field, since, thanks to the basic properties of a quantum computer, a great degree of parallelism can be achieved in the execution of the quantum version of machine learning algorithms. In this paper, a study has been carried out on these proper- ties and on the design of their quantum computing versions. More specif- ically, the study has been focused on the quantum version of the k-NN algorithm that allows to understand the fundamentals when transcribing classical machine learning algorithms into its quantum versions

    EEG alterations during treatment with olanzapine

    Get PDF
    The aim of this naturalistic observational study was to investigate EEG alterations in patients under olanzapine treatment with a special regard to olanzapine dose and plasma concentration. Twenty-two in-patients of a psychiatric university ward with the monodiagnosis of paranoid schizophrenia (ICD-10: F20.0), who received a monotherapy of olanzapine were included in this study. All patients had a normal alpha-EEG before drug therapy, and did not suffer from brain-organic dysfunctions, as verified by clinical examination and cMRI scans. EEG and olanzapine plasma levels were determined under steady-state conditions (between 18 and 22 days after begin of treatment). In 9 patients (40.9%), pathological EEG changes (one with spike-waves) consecutive to olanzapine treatment were observed. The dose of olanzapine was significantly higher in patients with changes of the EEG than in patients without changes (24.4 mg/day (SD: 8.1) vs. 12.7 mg/day (SD: 4.8); T = −4.3, df = 21, P < 0.001). In patients with EEG changes, the blood plasma concentration of olanzapine (45.6 μg/l (SD: 30.9) vs. 26.3 μg/l (SD: 21.6) tended to be also higher. The sensitivity of olanzapine dosage to predict EEG changes was 66.7%, the specificity 100% (Youden-index: 0.67). EEG abnormalities during olanzapine treatment are common. These are significantly dose dependent. Thus, EEG control recordings should be mandatory during olanzapine treatment with special emphasis on dosages exceeding 20 mg per day, although keeping in mind that EEGs have only a limited predictive power regarding future epileptic seizures

    Solving a Higgs optimization problem with quantum annealing for machine learning

    Get PDF
    The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics

    Quantum circuits with many photons on a programmable nanophotonic chip

    Full text link
    Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms. Present day photonic quantum computers have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware-software system for executing many-photon quantum circuits using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. It enables remote users to execute quantum algorithms requiring up to eight modes of strongly squeezed vacuum initialized as two-mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and genuine photon number-resolving readout on all outputs. Multi-photon detection events with photon numbers and rates exceeding any previous quantum optical demonstration on a programmable device are made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra, and graph similarity

    The Born supremacy: quantum advantage and training of an Ising Born machine

    Get PDF
    The search for an application of near-term quantum devices is widespread. Quantum Machine Learning is touted as a potential utilisation of such devices, particularly those which are out of the reach of the simulation capabilities of classical computers. In this work, we propose a generative Quantum Machine Learning Model, called the Ising Born Machine (IBM), which we show cannot, in the worst case, and up to suitable notions of error, be simulated efficiently by a classical device. We also show this holds for all the circuit families encountered during training. In particular, we explore quantum circuit learning using non-universal circuits derived from Ising Model Hamiltonians, which are implementable on near term quantum devices. We propose two novel training methods for the IBM by utilising the Stein Discrepancy and the Sinkhorn Divergence cost functions. We show numerically, both using a simulator within Rigetti's Forest platform and on the Aspen-1 16Q chip, that the cost functions we suggest outperform the more commonly used Maximum Mean Discrepancy (MMD) for differentiable training. We also propose an improvement to the MMD by proposing a novel utilisation of quantum kernels which we demonstrate provides improvements over its classical counterpart. We discuss the potential of these methods to learn `hard' quantum distributions, a feat which would demonstrate the advantage of quantum over classical computers, and provide the first formal definitions for what we call `Quantum Learning Supremacy'. Finally, we propose a novel view on the area of quantum circuit compilation by using the IBM to `mimic' target quantum circuits using classical output data only.Comment: v3 : Close to journal published version - significant text structure change, split into main text & appendices. See v2 for unsplit version; v2 : Typos corrected, figures altered slightly; v1 : 68 pages, 39 Figures. Comments welcome. Implementation at https://github.com/BrianCoyle/IsingBornMachin

    Convex optimization of programmable quantum computers

    Get PDF
    A fundamental model of quantum computation is the programmable quantum gate array. This is a quantum processor that is fed by a program state that induces a corresponding quantum operation on input states. While being programmable, any finite-dimensional design of this model is known to be non-universal, meaning that the processor cannot perfectly simulate an arbitrary quantum channel over the input. Characterizing how close the simulation is and finding the optimal program state have been open questions for the past 20 years. Here, we answer these questions by showing that the search for the optimal program state is a convex optimization problem that can be solved via semi-definite programming and gradient-based methods commonly employed for machine learning. We apply this general result to different types of processors, from a shallow design based on quantum teleportation, to deeper schemes relying on port-based teleportation and parametric quantum circuits

    Global transpiration data from sap flow measurements: The SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.This research was supported by the Minis-terio de Economía y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovación (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovación (grant no. CAS16/00207), the Agència de Gestió d’Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institució Catalana de Recerca i Estudis Avançats (Academia Award (JMV)). Víctor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain)
    corecore