21 research outputs found

    Structure-function of anticoagulant TIX-5, the inhibitor of factor Xa-mediated FV activation

    Get PDF
    Background The prothrombinase complex consists of factors Xa (FXa) and Va (FVa) on an anionic phospholipid surface and converts prothrombin into thrombin. Both coagulation factors require activation before complex assembly. We recently identified TIX-5, a unique anticoagulant tick protein that specifically inhibits FXa-mediated activation of FV. Because TIX-5 inhibited thrombin generation in blood plasma, it was concluded that FV activation by FXa contributes importantly to coagulation.Objective We aimed to unravel the structure-function relationships of TIX-5.Method We used a structure model generated based on homology with the allergen Der F7.Results Tick inhibitor of factor Xa toward FV was predicted to consist of a single rod formed by several beta sheets wrapped around a central C-terminal alpha helix. By mutagenesis we could show that two hydrophobic loops at one end of the rod mediate the phospholipid binding of TIX-5. On the other end of the rod an FV interaction region was identified on one side, whereas on the other side an EGK sequence was identified that could potentially form a pseudosubstrate of FXa. All three interaction sites were important for the anticoagulant properties of TIX-5 in a tissue factor-initiated thrombin generation assay as well as in the inhibition of FV activation by FXa in a purified system.Conclusion The structure-function properties of TIX-5 are in perfect agreement with a protein that inhibits the FXa-mediated activation on a phospholipid surface. The present elucidation of the mechanism of action of TIX-5 will aid in deciphering the processes involved in the initiation phase of blood coagulation.Thrombosis and Hemostasi

    Tick proteins in Borrelia transmission and tick feeding: t(r)ick or treat?

    Get PDF
    The data described in this thesis contribute to the understanding of the role of tick proteins in tick feeding and transmission of Borrelia. Targeting tick proteins that play a crucial role in tick feeding and/or Borrelia transmission are interesting candidates for anti-tick vaccines to prevent Lyme borreliosis. By interfering with the ticks ability to inhibit innate immune responses and activation of coagulation the tick bite site could become a more hostile environment for Borrelia when it enters the skin. Future research is necessary to explore the tick sialome in order to identify and characterize tick proteins to develop a cocktail vaccine that completely blocks pathogen transmission and/or tick feeding. The vaccination approaches discussed in this thesis could be applicable to other vector-borne pathogens as well

    Complement evasion by Bordetella pertussis: implications for improving current vaccines

    Get PDF
    Contains fulltext : 154855.pdf (publisher's version ) (Open Access

    The intestinal microbiota and host immune interactions in the critically ill

    No full text
    The gastrointestinal tract harbors a complex population of microbes that play a fundamental role in the development of the immune system and human health. Besides an important local contribution in the host defense against infections, it has become increasingly clear that intestinal bacteria also modulate immune responses at systemic sites. These new insights can be of profound clinical relevance especially for intensive care medicine where the majority of patients are treated with antibiotics, which have pervasive and long-term effects on the intestinal microbiota. Moreover, considerable progress has been made in defining the role of the intestinal microbiota in both health and disease. In this review, we highlight these aspects and focus on recent key findings addressing the role of intestinal microbiota in antimicrobial defense mechanisms and its impact on intestinal homeostasis in the critically il

    Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    No full text
    Background: B. burgdorferi sensu lato (sl) is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH) or Factor H-like protein1 (FHL-1) to Complement Regulator-Acquiring Surface Proteins (CRASPs). Results: We demonstrate that B. garinii OspA serotype 4 (ST4) PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions: B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii.Medical Microbiolog

    Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    No full text
    Background: B. burgdorferi sensu lato (sl) is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH) or Factor H-like protein1 (FHL-1) to Complement Regulator-Acquiring Surface Proteins (CRASPs). Results: We demonstrate that B. garinii OspA serotype 4 (ST4) PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions: B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii

    Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization

    Get PDF
    Contains fulltext : 177631.pdf (publisher's version ) (Open Access)The Lyme disease agent, Borrelia burgdorferi, colonizes the gut of the tick Ixodes scapularis, which transmits the pathogen to vertebrate hosts including humans. Here we show that B. burgdorferi colonization increases the expression of several tick gut genes including pixr, encoding a secreted gut protein with a Reeler domain. RNA interference-mediated silencing of pixr, or immunity against PIXR in mice, impairs the ability of B. burgdorferi to colonize the tick gut. PIXR inhibits bacterial biofilm formation in vitro and in vivo. Abrogation of PIXR function in vivo results in alterations in the gut microbiome, metabolome and immune responses. These alterations influence the spirochete entering the tick gut in multiple ways. PIXR abrogation also impairs larval molting, indicative of its role in tick biology. This study highlights the role of the tick gut in actively managing its microbiome, and how this impacts B. burgdorferi colonization of its arthropod vector. Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the tick Ixodes scapularis. Here, the authors show that a tick secreted protein (PIXR) modulates the tick gut microbiota and facilitates B. burgdorferi colonization

    Lyme borreliosis vaccination: the facts, the challenge, the future

    No full text
    Lyme disease, or Lyme borreliosis, the most prevalent arthropod-borne disease in the Western world, is caused by spirochetes belonging to the Borrelia burgdorferi sensu lato group and is predominantly transmitted through lxodes ticks. There is currently no vaccine available to prevent Lyme borreliosis in humans. Borrelia outer membrane proteins are reviewed which have been investigated as vaccine candidates. In addition, several tick proteins are discussed, on which anti-tick vaccines have been based, or are interesting future candidates, to prevent transmission of the spirochete from the tick vector to the mammalian host. Finally, novel vaccination strategies to prevent Lyme borreliosis are proposed, based on multiple Borrelia antigens, tick antigens or a combination of both Borrelia as well as tick antigens.Medical Microbiolog
    corecore