1,354 research outputs found
Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality and Entanglement
We theoretically study the nuclear spin dynamics driven by electron transport
and hyperfine interaction in an electrically-defined double quantum dot (DQD)
in the Pauli-blockade regime. We derive a master-equation-based framework and
show that the coupled electron-nuclear system displays an instability towards
the buildup of large nuclear spin polarization gradients in the two quantum
dots. In the presence of such inhomogeneous magnetic fields, a quantum
interference effect in the collective hyperfine coupling results in sizable
nuclear spin entanglement between the two quantum dots in the steady state of
the evolution. We investigate this effect using analytical and numerical
techniques, and demonstrate its robustness under various types of
imperfections.Comment: 35 pages, 19 figures. This article provides the full analysis of a
scheme proposed in Phys. Rev. Lett. 111, 246802 (2013). v2: version as
publishe
Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
Wigner crystals are prime candidates for the realization of regular electron
lattices under minimal requirements on external control and electronics.
However, several technical challenges have prevented their detailed
experimental investigation and applications to date. We propose an
implementation of two-dimensional electron lattices for quantum simulation of
Ising spin systems based on self-assembled Wigner crystals in transition-metal
dichalcogenides. We show that these semiconductors allow for minimally invasive
all-optical detection schemes of charge ordering and total spin. For incident
light with optimally chosen beam parameters and polarization, we predict a
strong dependence of the transmitted and reflected signals on the underlying
lattice periodicity, thus revealing the charge order inherent in Wigner
crystals. At the same time, the selection rules in transition-metal
dichalcogenides provide direct access to the spin degree of freedom via Faraday
rotation measurements.Comment: 15 pages, 12 figure
The CCAFS Flagship Program 4 Trial on Results-Based Management: Progress Report
This document summarises what was achieved during 2014 by the CCAFS RBM trial. This is followed by a discussion of the prerequisites for a CRP to implement successful RBM, what we mean by “successful RBM”, what has worked according to expectations, and what was done when things did not work out as expected. We summarise a few key results from an on-line survey of project participants conducted in November. We conclude with a summary of our overall learnings about RBM during 2014
Diffusion algebras
We define the notion of "diffusion algebras". They are quadratic
Poincare-Birkhoff-Witt (PBW) algebras which are useful in order to find exact
expressions for the probability distributions of stationary states appearing in
one-dimensional stochastic processes with exclusion. One considers processes in
which one has N species, the number of particles of each species being
conserved. All diffusion algebras are obtained. The known examples already used
in applications are special cases in our classification. To help the reader
interested in physical problems, the cases N=3 and 4 are listed separately.Comment: 29 pages; minor misprints corrected, few references adde
The multilevel trigger system of the DIRAC experiment
The multilevel trigger system of the DIRAC experiment at CERN is presented.
It includes a fast first level trigger as well as various trigger processors to
select events with a pair of pions having a low relative momentum typical of
the physical process under study. One of these processors employs the drift
chamber data, another one is based on a neural network algorithm and the others
use various hit-map detector correlations. Two versions of the trigger system
used at different stages of the experiment are described. The complete system
reduces the event rate by a factor of 1000, with efficiency 95% of
detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
Promising New Assays and Technologies for the Diagnosis and Management of Infectious Diseases
Recent advancements in technology have led to the development of new techniques that hold promise for improved diagnosis and management of infectious diseases. Here, we review new assays that help better identify pathogens and tailor antibiotic therapy to patients' need
Differential Impact of Plant Secondary Metabolites on the Soil Microbiota
Plant metabolites can shape the microbial community composition in the soil. Two indole metabolites, benzoxazolinone (BOA) and gramine, produced by different Gramineae species, and quercetin, a flavonoid synthesized by many dicot species, were studied for their impacts on the community structure of field soil bacteria. The three plant metabolites were directly added to agricultural soil over a period of 28 days. Alterations in bacterial composition were monitored by next generation sequencing of 16S rRNA gene PCR products and phospholipid fatty acid analysis. Treatment of the soil with the plant metabolites altered the community composition from phylum to amplicon sequence variant (ASV) level. Alpha diversity was significantly reduced by BOA or quercetin, but not by gramine. BOA treatment caused a decrease of the relative abundance of 11 ASVs, while only 10 ASVs were increased. Gramine or quercetin treatment resulted in the increase in relative abundance of many more ASVs (33 or 38, respectively), most of them belonging to the Proteobacteria. Isolation and characterization of cultivable bacteria indicated an enrichment in Pseudarthrobacter or Pseudomonas strains under BOA/quercetin or BOA/gramine treatments, respectively. Therefore, the effects of the treatments on soil bacteria were characteristic for each metabolite, with BOA exerting a predominantly inhibitory effect, with only few genera being able to proliferate, while gramine and quercetin caused the proliferation of many potentially beneficial strains. As a consequence, BOA or gramine biosynthesis, which have evolved in different barley species, is accompanied with the association of distinct bacterial communities in the soil, presumably after mutual adaptation during evolution
- …