17 research outputs found

    Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite

    Full text link
    We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a "dead" surface layer is present that is only absorbing photons but does not contribute to the scattering signal.Comment: to appear in Phys. Rev.

    Mapping the energy-time landscape of spins with helical X-rays

    Full text link
    Unveiling the key mechanisms that determine optically driven spin dynamics is essential both to probe the fundamental nature of ultrafast light-matter interactions, but also to drive future technologies of smaller, faster, and more energy efficient devices. Essential to this task is the ability to use experimental spectroscopic tools to evidence the underlying energy- and spin-resolved dynamics of non-equilibrium electron occupations. In this joint theory and experimental work, we demonstrate that ultrafast helicity-dependent soft X-ray absorption spectroscopy (HXAS) allows access to spin-, time- and energy specific state occupation after optical excitation. We apply this method to the prototype transition metal ferromagnet cobalt and find convincing agreement between theory and experiment. The richly structured energy-resolved spin dynamics unveil the subtle interplay and characteristic time scales of optical excitation and spin-orbit induced spin-flip transitions in this material: the spin moment integrated in an energy window below the Fermi level first exhibits an ultrafast increase as minority carriers are excited by the laser pulse, before it is reduced as spin-flip process in highly localized, low energy states start to dominate. The results of this study demonstrate the power of element specific transient HXAS, placing it as a potential new tool for identifying and determining the role of fundamental processes in optically driven spin dynamics in magnetic materials

    Surface oxidation of liquid Sn

    Full text link
    We report the results of an x-ray scattering study that reveals oxidation kinetics and formation of a previously unreported crystalline phase of SnO at the liquid-vapour interface of Sn. Our experiments reveal that the pure liquid Sn surface does not react with molecular oxygen below an activation pressure of \~5.0*10-6 Torr. Above that pressure a rough solid Sn oxide grows over the liquid metal surface. Once the activation pressure has been exceeded the oxidation proceeds at pressures below the oxidation pressure threshold. The observed diffraction pattern associated with the surface oxidation does not match any of the known Sn oxide phases. The data have an explicit signature of the face-centred cubic structure, however it requires lattice parameters that are about 9% smaller than those reported for cubic structures of high-pressure phases of Sn oxides. Keywords: X-ray scattering, diffraction, and reflection; Oxidation; Surface chemical reaction; Surface structure, morphology, roughness, and topography; Tin; Tin oxides; Liquid surfaces; Polycrystalline thin filmsComment: 18 pages, 6 figures, 1 table; Submitted to Surface Scienc

    Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films

    Get PDF
    Electronic structure modifications due to strain are an effective method for tailoring nano-scale functional materials. Demonstrated on nickel oxide (NiO) thin films, Resonant Inelastic X-ray Scattering (RIXS) at the transition-metal M2,3-edge is shown to be a powerful tool for measuring the electronic structure modification due to strain in the near-surface region. Analyses from the M2,3-edge RIXS in comparison with dedicated crystal field multiplet calculations show distortions in 40 nm NiO grown on a magnesium oxide (MgO) substrate (NiO/MgO) similar to those caused by surface relaxation of bulk NiO. The films of 20 and 10 nm NiO/MgO show slightly larger differences from bulk NiO. Quantitatively, the NiO/MgO samples all are distorted from perfect octahedral (Oh) symmetry with a tetragonal parameter Ds of about −0.1 eV, very close to the Ds distortion from octahedral (Oh) symmetry parameter of −0.11 eV obtained for the surface-near region from a bulk NiO crystal. Comparing the spectra of a 20 nm film of NiO grown on a 20 nm magnetite (Fe3O4) film on a MgO substrate (NiO/Fe3O4/MgO) with the calculated multiplet analyses, the distortion parameter Ds appears to be closer to zero, showing that the surface-near region of this templated film is less distorted from Oh symmetry than the surface-near region in bulk NiO. Finally, the potential of M2,3-edge RIXS for other investigations of strain on electronic structure is discussed

    Ultrafast and Energy-Efficient Quenching of Spin Order: Antiferromagnetism Beats Ferromagnetism

    Get PDF
    By comparing femtosecond laser pulse induced ferro- and antiferromagnetic dynamics in one and the same material-metallic dysprosium-we show both to behave fundamentally different. Antiferromagnetic order is considerably faster and much more efficiently reduced by optical excitation than its ferromagnetic counterpart. We assign the fast and extremely efficient process in the antiferromagnet to an interatomic transfer of angular momentum within the spin system. Our findings imply that this angular momentum transfer channel is effective in other magnetic metals with nonparallel spin alignment. They also point out a possible route towards energy-efficient spin manipulation for magnetic devices

    Magnetic field effect in stripe-ordered 214 (La<sub>1.6-x</sub>Nd<sub>0.4</sub>)Sr<sub>x</sub>CuO<sub>4</sub> and La<sub>2-x</sub>Ba<sub>x</sub>CuO<sub>4</sub> superconducting cuprates studied by resonant soft x-ray scattering

    No full text
    We present a study of the charge order of 214 stripe ordered superconducting cuprates (La1.6-x -Nd-0.4)SrxCuO4 and La-2_xBaxCuO4 for doping levels 0.11 <= p <= 0.14 by means of resonant x-ray scattering. Up to 6 T, we find no field dependence on either the integrated intensity or the correlation length of the charge modulations, providing evidence for strong stability of charge order under applied fields. The magnetic field data support a strong pinning scenario induced by the low-temperature tetragonal distortion and static disorder, and they highlight the role of the symmetry of the lattice on the stabilization of electronic periodicities
    corecore