5 research outputs found

    EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake

    Get PDF
    Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity

    Treatment modifcation after starting cART in people living with HIV: retrospective analysis of the German ClinSurv HIV Cohort 2005-2017 (vol 48, pg 723, 2020)

    Get PDF
    Correction to: Infection (2020) 48:723–733 https://doi.org/10.1007/s15010-020-01469-6. The original version of this article unfortunately contained a mistake. In this article the authors Dirk Schürmann at affiliation Charité, University Medicine, Berlin, Olaf Degen at affiliation University Clinic Hamburg Eppendorf, Hamburg and Heinz-August Horst at affiliation University Hospital Schleswig–Holstein, Kiel, Germany were missing from the author list. The original article has been corrected

    The trans-ancestral genomic architecture of glycemic traits

    No full text
    Abstract Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution
    corecore