333 research outputs found

    Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria)

    Get PDF
    Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clade

    Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria)

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1017/S0025315408002257.Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades

    Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy

    Get PDF
    Marine hydroids are important benthic components of shallow and deep waters worldwide, but their taxonomy is controversial because diagnostic morphological characters to categorize taxa are limited. Their genetic relationships are also little investigated. We tested taxonomic hypotheses within the highly speciose superfamily Plumularioidea by integrating a classical morphological approach with DNA barcoding of the 16S and COI mitochondrial markers for 659 and 196 specimens of Plumularioidea, respectively. Adding Genbank sequences, we inferred systematic relationships among 1,114 plumularioids, corresponding to 123 nominal species and 17 novel morphospecies in five families of Plumularioidea. We found considerable inconsistencies in the systematics of nominal families, genera and species. The families Kirchenpaueriidae and Plumulariidae were polyphyletic and the Halopterididae paraphyletic. Most genera of Plumularioidea are not monophyletic. Species diversity is considerably underestimated. Within our study, at least 10% of the morphologically-distinctive morphospecies are undescribed, and about 40% of the overall species richness is represented by cryptic species. Convergent evolution and morphological plasticity therefore blur systematic relationships. Additionally, cryptic taxa occur frequently in sympatry or parapatry, complicating correspondence with type material of described species. Sometimes conspecificity of different morphotypes was found. The taxonomy of hydroids requires continued comprehensive revision.This work relied on several hydrozoan samples collected from various sites, with the aid of many people. Supplementary Table S1 refers many of the people involved in the collection and/or preservation of the samples. C.J.M. acknowledges his great buddy-divers Jaime N.-Ruiz (CIMAR, Univ. Costa Rica), Axel Calderon, Nathaniel Chu, Eleni Petrou (STRI, Smiths. Inst.), Hanae Spathias, Karen Koltes (at the Belize station, Smith. Inst.), Freya Sommer (Hopkins Marine Station), Remilson Ferreira ('Costa Norte', Sao Tome), Frederico Cardigos (DOP, Univ. Azores) and others that assisted the dives. C.J.M. also acknowledges Rita Castillo (CIMAR, Univ. Costa Rica), Plinio Gondola, Ligia Calderon, Laura Geyer, Maria Castillo (STRI, Smiths. Inst.), Gregory Ruiz (SERC, Smiths. Inst.), Paul Greenhall, William Keel (MSC, Smith. Inst.), Manuel Enes, Valentina Matos (IMAR/DOP, Univ. Azores), Filipe Porteiro, Joao Goncalves (OKEANOS/IMAR, Univ. Azores), Marina Cunha, Ascensao Ravara (CESAM, Univ. Aveiro), Shirley Pomponi (Harbor Branch, Florida Atlantic Univ.), Estrela Matilde (Fundacao Principe Trust), Monica Albuquerque, Ines Tojeira (EMEPC), Diana Carvalho (Nat. Mus. Nat. Hist., Lisbon) and many others colleagues that facilitated the morphologic classifications and deposition of the samples. Peter Schuchert (Mus. d'Hist. Nat. Geneve) kindly provided some DNA extractes. Todd Kincaid and his team of GUE divers (Project Baseline - Azores) collected valuable samples from unusual depths. Joana Boavida (CIIMAR, Univ. Algarve) facilitated some samples of the 'DeepReefs' project. Jim Drewery (Marine Scotland Science Inst.) also provided few samples. Dale Calder (Royal Ontario Museum) provided some bibliography to C.J.M. and discussed/resolved some dubios taxonomic classifications. Colleagues at the L.A.B. (NMNH, Smith. Inst.) were very supportive. The APC fees for open access publication were supported by a program of the Regional Government of the Azores ("Apoio ao funcionamento e gestao dos centros de I&D regionais: 2018 - DRCT-medida 1

    The accumulation of microplastic pollution in a commercially important fishing ground.

    Get PDF
    Publication history: Accepted - 3 March 2022; Published online - 10 March 2022The Irish Sea is an important area for Norway Lobster Nephrops norvegicus fisheries, which are the most valuable fishing resource in the UK. Norway lobster are known to ingest microplastic pollution present in the sediment and have displayed reduced body mass when exposed to microplastic pollution. Here, we identified microplastic pollution in the Irish Sea fishing grounds through analysis of 24 sediment samples from four sites of differing proximity to the Western Irish Sea Gyre in both 2016 and 2019. We used µFTIR spectroscopy to identify seven polymer types, and a total of 77 microplastics consisting of fibres and fragments. The mean microplastics per gram of sediment ranged from 0.13 to 0.49 and 0 to 1.17 MP/g in 2016 and 2019, respectively. There were no differences in the microplastic counts across years, and there was no correlation of microplastic counts with proximity to the Western Irish Sea Gyre. Considering the consistently high microplastic abundance found in the Irish Sea, and the propensity of N. norvegicus to ingest and be negatively impacted by them, we suggest microplastic pollution levels in the Irish Sea may have adverse impacts on N. norvegicus and negative implications for fishery sustainability in the future.EMC is supported by the Department for Agriculture, Environment and Rural Affairs Northern Ireland. NHJ is supported by an Envision Doctoral Training Programme Scholarship funded by the UK National Environment Research Council (NERC). EMC gratefully thanks Dave Williams and Hazel Clark for their technical assistance, Prof Jochen H. E. Koop for facilitating the µFTIR analysis at the Federal Institute of Hydrology, BfG, Koblenz, Germany, and Dr Jason Kirby for facilitating the microplastic analysis at Liverpool John Moores University

    Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires

    Get PDF
    Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 μm was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed

    Early carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China

    Full text link
    38 brachiopod species in 27 genera and subgenera are described from the Yudong Formation in the Shidian-Baoshan area, west Yunnan, southwest China. New taxa include two new subgenera: Unispirifer (Septimispirifer) and Brachythyrina (Longathyrina), and seven new species: Eomarginifera yunnanensis, Marginatia cylindrica, Unispirifer (Unispirifer) xiangshanensis, Unispirifer (Septimispirifer) wafangjieensis, Brachythyrina (Brachythyrina) transversa, Brachythyrina (Longathyrina) baoshanensis, and Girtyella wafangjieensis. Based on the described material and constraints from associated coral and conodont faunas, the age of the brachiopod fauna from the Yudon Formation is considered late Tournaisian (Early Carboniferous), with a possibility extending into earlyViseacutean.<br /

    Yolk sac macrophage progenitors traffic to the embryo during defined stages of development

    Get PDF
    Tissue macrophages in many adult organs originate from yolk sac (YS) progenitors, which invade the developing embryo and persist by means of local self-renewal. However, the route and characteristics of YS macrophage trafficking during embryogenesis are incompletely understood. Here we show the early migration dynamics of YS-derived macrophage progenitors in vivo using fate mapping and intravital microscopy. From embryonic day 8.5 (E8.5) CX(3)CR1+ pre-macrophages are present in the mouse YS where they rapidly proliferate and gain access to the bloodstream to migrate towards the embryo. Trafficking of pre-macrophages and their progenitors from the YS to tissues peaks around E10.5, dramatically decreases towards E12.5 and is no longer evident from E14.5 onwards. Thus, YS progenitors use the vascular system during a restricted time window of embryogenesis to invade the growing fetus. These findings close an important gap in our understanding of the development of the innate immune system
    corecore