24 research outputs found

    Matrix Product Density Operators: Renormalization Fixed Points and Boundary Theories

    Get PDF
    We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced by F. Verstraete et al. in 2005 and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced by Cirac et al. in 2011.Comment: 63 pages, Annals of Physics (2016). Accepted versio

    Nonlocal resources in the presence of Superselection Rules

    Get PDF
    Superselection rules severely alter the possible operations that can be implemented on a distributed quantum system. Whereas the restriction to local operations imposed by a bipartite setting gives rise to the notion of entanglement as a nonlocal resource, the superselection rule associated with particle number conservation leads to a new resource, the \emph{superselection induced variance} of local particle number. We show that, in the case of pure quantum states, one can quantify the nonlocal properties by only two additive measures, and that all states with the same measures can be asymptotically interconverted into each other by local operations and classical communication. Furthermore we discuss how superselection rules affect the concepts of majorization, teleportation and mixed state entanglement.Comment: 4 page

    Edge theories in Projected Entangled Pair State models

    Get PDF
    We study the edge physics of gapped quantum systems in the framework of Projected Entangled Pair State (PEPS) models. We show that the effective low-energy model for any region acts on the entanglement degrees of freedom at the boundary, corresponding to physical excitations located at the edge. This allows us to determine the edge Hamiltonian in the vicinity of PEPS models, and we demonstrate that by choosing the appropriate bulk perturbation, the edge Hamiltonian can exhibit a rich phase diagram and phase transitions. While for models in the trivial phase any Hamiltonian can be realized at the edge, we show that for topological models, the edge Hamiltonian is constrained by the topological order in the bulk which can e.g. protect a ferromagnetic Ising chain at the edge against spontaneous symmetry breaking.Comment: 5 pages, 4 figure

    One-shot entanglement generation over long distances in noisy quantum networks

    Get PDF
    We consider the problem of creating a long-distance entangled state between two stations of a network, where neighboring nodes are connected by noisy quantum channels. We show that any two stations can share an entangled pair if the effective probability for the quantum errors is below a certain threshold, which is achieved by using local redundant encoding to preserve the global phase and network-based correction for the bit-flip errors. In contrast to the convensional quantum repeater schemes we are not limited by the memory coherence time, because all quantum operations only use one-way classical communication and can be done in one shot. Meanwhile, the overhead of local resources only increases logarithmically with the size of the network, making our proposal favorable to practical applications of long-distance quantum communication.Comment: revtex4, 6 pages, 5 figures (.eps

    Entanglement renormalization and boundary critical phenomena

    Full text link
    The multiscale entanglement renormalization ansatz is applied to the study of boundary critical phenomena. We compute averages of local operators as a function of the distance from the boundary and the surface contribution to the ground state energy. Furthermore, assuming a uniform tensor structure, we show that the multiscale entanglement renormalization ansatz implies an exact relation between bulk and boundary critical exponents known to exist for boundary critical systems.Comment: 6 pages, 4 figures; for a related work see arXiv:0912.164

    A variational method based on weighted graph states

    Full text link
    In a recent article [Phys. Rev. Lett. 97 (2006), 107206], we have presented a class of states which is suitable as a variational set to find ground states in spin systems of arbitrary spatial dimension and with long-range entanglement. Here, we continue the exposition of our technique, extend from spin 1/2 to higher spins and use the boson Hubbard model as a non-trivial example to demonstrate our scheme.Comment: 36 pages, 13 figure

    Exact symmetry breaking ground states for quantum spin chains

    Full text link
    We introduce a family of spin-1/2 quantum chains, and show that their exact ground states break the rotational and translational symmetries of the original Hamiltonian. We also show how one can use projection to construct a spin-3/2 quantum chain with nearest neighbor interaction, whose exact ground states break the rotational symmetry of the Hamiltonian. Correlation functions of both models are determined in closed form. Although we confine ourselves to examples, the method can easily be adapted to encompass more general models.Comment: 4 pages, RevTex. 4 figures, minor changes, new reference

    From density-matrix renormalization group to matrix product states

    Full text link
    In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonian in MPS form. We also show how to make use of global symmetries, for both the Abelian and non-Abelian cases.Comment: Numerous small changes and clarifications, added a figur

    On entropy growth and the hardness of simulating time evolution

    Full text link
    The simulation of quantum systems is a task for which quantum computers are believed to give an exponential speedup as compared to classical ones. While ground states of one-dimensional systems can be efficiently approximated using Matrix Product States (MPS), their time evolution can encode quantum computations, so that simulating the latter should be hard classically. However, one might believe that for systems with high enough symmetry, and thus insufficient parameters to encode a quantum computation, efficient classical simulation is possible. We discuss supporting evidence to the contrary: We provide a rigorous proof of the observation that a time independent local Hamiltonian can yield a linear increase of the entropy when acting on a product state in a translational invariant framework. This criterion has to be met by any classical simulation method, which in particular implies that every global approximation of the evolution requires exponential resources for any MPS based method.Comment: 15 pages. v2: Published version, Journal-Ref. adde

    Entanglement and correlation functions following a local quench: a conformal field theory approach

    Full text link
    We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be described by means of quantum field theory. In the case when the corresponding theory is conformal, we study the evolution of the entanglement entropy for different bi-partitions of the line. We also consider the behavior of one- and two-point correlation functions. All our findings may be explained in terms of a picture, that we believe to be valid more generally, whereby quasiparticles emitted from the joining point at the initial time propagate semiclassically through the system.Comment: 19 pages, 4 figures, v2 typos corrected and refs adde
    corecore