12,838 research outputs found

    Comment on "Anderson transition in disordered graphene"

    Full text link
    We comment on a recent letter by Amini et al. (EPL 87, 37002 (2009)) concerning the existence of a mobility edge in disordered graphene.Comment: 3 pages, 3 figure

    An Improved Heat Kernel Expansion from Worldline Path Integrals

    Get PDF
    The one--loop effective action for the case of a massive scalar loop in the background of both a scalar potential and an abelian or non--abelian gauge field is written in a one--dimensional path integral representation. From this the inverse mass expansion is obtained by Wick contractions using a suitable Green function, which allows the computation of higher order coefficients. For the scalar case, explicit results are presented up to order O(T**8) in the proper time expansion. The relation to previous work is clarified.Comment: 13 pages, Plain TEX, no figure

    Electron effective mass in Al0.72_{0.72}Ga0.28_{0.28}N alloys determined by mid-infrared optical Hall effect

    Full text link
    The effective electron mass parameter in Si-doped Al0.72_{0.72}Ga0.28_{0.28}N is determined to be m=(0.336±0.020)m0m^\ast=(0.336\pm0.020)\,m_0 from mid-infrared optical Hall effect measurements. No significant anisotropy of the effective electron mass parameter is found supporting theoretical predictions. Assuming a linear change of the effective electron mass with the Al content in AlGaN alloys and m=0.232m0m^\ast=0.232\,m_0 for GaN, an average effective electron mass of m=0.376m0m^\ast=0.376\,m_0 can be extrapolated for AlN. The analysis of mid-infrared spectroscopic ellipsometry measurements further confirms the two phonon mode behavior of the E1_1(TO) and one phonon mode behavior of the A1_1(LO) phonon mode in high-Al-content AlGaN alloys as seen in previous Raman scattering studies

    Advanced electrochemical depolarized concentrator cell development

    Get PDF
    An advanced electrochemical depolarized carbon dioxide concentrator subsystem, to collect and concentrate metabolically produced CO2 for subsequent O2 recovery in spacecraft, is discussed

    Wave packet evolution in non-Hermitian quantum systems

    Full text link
    The quantum evolution of the Wigner function for Gaussian wave packets generated by a non-Hermitian Hamiltonian is investigated. In the semiclassical limit 0\hbar\to 0 this yields the non-Hermitian analog of the Ehrenfest theorem for the dynamics of observable expectation values. The lack of Hermiticity reveals the importance of the complex structure on the classical phase space: The resulting equations of motion are coupled to an equation of motion for the phase space metric---a phenomenon having no analog in Hermitian theories.Comment: Example added, references updated, 4 pages, 2 figure

    Quantum kk-core conduction on the Bethe lattice

    Full text link
    Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least k1k-1 neighboring occupied bonds, i.e. kk-core diluted. In the classical case, we find the onset of conduction for k=2k=2 is continuous, while for k=3k=3, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupied bond as a random scatterer, we find for k=3k=3 that the random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to a new universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig

    Aging and intermittency in a p-spin model of a glass

    Full text link
    We numerically analyze the statistics of the heat flow between an aging system and its thermal bath, following a method proposed and tested for a spin-glass model in a recent Letter (P. Sibani and H.J. Jensen, Europhys. Lett.69, 563 (2005)). The present system, which lacks quenched randomness, consists of Ising spins located on a cubic lattice, with each plaquette contributing to the total energy the product of the four spins located at its corners. Similarly to our previous findings, energy leaves the system in rare but large, so called intermittent, bursts which are embedded in reversible and equilibrium-like fluctuations of zero average. The intermittent bursts, or quakes, dissipate the excess energy trapped in the initial state at a rate which falls off with the inverse of the age. This strongly heterogeneous dynamical picture is explained using the idea that quakes are triggered by energy fluctuations of record size, which occur independently within a number of thermalized domains. From the temperature dependence of the width of the reversible heat fluctuations we surmise that these domains have an exponential density of states. Finally, we show that the heat flow consists of a temperature independent term and a term with an Arrhenius temperature dependence. Microscopic dynamical and structural information can thus be extracted from numerical intermittency data. This type of analysis seems now within the reach of time resolved micro-calorimetry techniques.Comment: 9 pages, 6 figures, europhysics letter style, to appear in Physical Review

    A compact dual atom interferometer gyroscope based on laser-cooled rubidium

    Full text link
    We present a compact and transportable inertial sensor for precision sensing of rotations and accelerations. The sensor consists of a dual Mach-Zehnder-type atom interferometer operated with laser-cooled 87^{87}Rb. Raman processes are employed to coherently manipulate the matter waves. We describe and characterize the experimental apparatus. A method for passing from a compact geometry to an extended interferometer with three independent atom-light interaction zones is proposed and investigated. The extended geometry will enhance the sensitivity by more than two orders of magnitude which is necessary to achieve sensitivities better than 10810^{-8} rad/s/Hz\sqrt{\rm Hz}.Comment: 9 pages, 8 figure
    corecore