70 research outputs found

    Osteoclast Activated FoxP3+ CD8+ T-Cells Suppress Bone Resorption in vitro

    Get PDF
    BACKGROUND: Osteoclasts are the body's sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (T(EFF)) increase bone resorption by osteoclasts. Prolonged exposure to the T(EFF) produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previously shown that under non-inflammatory conditions, murine osteoclasts can recruit naïve CD8 T-cells and activate these T-cells to induce CD25 and FoxP3 (Tc(REG)). The activation of CD8 T-cells by osteoclasts also induced the cytokines IL-2, IL-6, IL-10 and IFN-γ. Individually, these cytokines can activate or suppress osteoclast resorption. PRINCIPAL FINDINGS: To determine the net effect of Tc(REG) on osteoclast activity we used a number of in vitro assays. We found that Tc(REG) can potently and directly suppress bone resorption by osteoclasts. Tc(REG) could suppress osteoclast differentiation and resorption by mature osteoclasts, but did not affect their survival. Additionally, we showed that Tc(REG) suppress cytoskeletal reorganization in mature osteoclasts. Whereas induction of Tc(REG) by osteoclasts is antigen-dependent, suppression of osteoclasts by Tc(REG) does not require antigen or re-stimulation. We demonstrated that antibody blockade of IL-6, IL-10 or IFN-γ relieved suppression. The suppression did not require direct contact between the Tc(REG) and osteoclasts. SIGNIFICANCE: We have determined that osteoclast-induced Tc(REG) can suppress osteoclast activity, forming a negative feedback system. As the CD8 T-cells are activated in the absence of inflammatory signals, these observations suggest that this regulatory loop may play a role in regulating skeletal homeostasis. Our results provide the first documentation of suppression of osteoclast activity by CD8 regulatory T-cells and thus, extend the purview of osteoimmunology

    The Late Stage of Human Immunodeficiency Virus Type 1 Assembly Is an Energy-Dependent Process

    No full text
    Several recent studies have indicated the involvement of host cell factors in human immunodeficiency virus type 1 (HIV-1) assembly. To ascertain whether ATP-dependent factors play a role in this process, we quantified virus-like particle (VLP) production by ATP-depleted cells. Pharmacological ATP depletion abrogated VLP production without affecting cell viability or inducing degradation of HIV-1 Gag protein. This effect occurred even when the ATP-depleting agents were added 1 h into the assembly process, and it was reversed by removal of these agents. ATP depletion did not affect Gag membrane binding or multimerization. Density gradient analysis indicated that HIV-1 assembly intermediates were stalled late in the assembly process. This conclusion was further supported by electron microscopy analysis, which revealed a preponderance of plasma membrane-associated stalk-like structures in the ATP-depleted cells. Since no HIV-1 proteins bind or hydrolyze ATP, these findings indicate that an ATP-requiring cellular factor is an obligatory participant late in the HIV-1 assembly process

    Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera)

    Get PDF
    We examined chromosomal distribution of major ribosomal DNAs (rDNAs), clustered in the nucleolar organizer regions (NORs), in 18 species of moths and butterflies using fluorescence in situ hybridization (FISH) with a codling moth (Cydia pomonella) 18S rDNA probe. Most species showed one or two rDNA clusters in their haploid karyotype but exceptions with four to eleven clusters also occurred. Our results in a compilation with previous data revealed dynamic evolution of rDNA distribution in Lepidoptera except Noctuoidea, which showed a highly uniform rDNA pattern. In karyotypes with one NOR, interstitial location of rDNA prevailed, whereas two-NOR karyotypes showed mostly terminally located rDNA clusters. A possible origin of the single interstitial NOR by fusion between two NOR-chromosomes with terminal rDNA clusters lacks support in available data. In some species, spreading of rDNA to new, mostly terminal chromosome regions was found. The multiplication of rDNA clusters without alteration of chromosome numbers rules out chromosome fissions as a major mechanism of rDNA expansion. Based on rDNA dynamics in Lepidoptera and considering the role of ordered nuclear architecture in karyotype evolution, we propose ectopic recombination, i.e. homologous recombination between repetitive sequences of non-homologous chromosomes, as a primary motive force in rDNA repatterning
    corecore