3 research outputs found

    An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors

    Get PDF
    AbstractA novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent-free, IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention

    Toward New Solvents for EDLCs: From Computational Screening to Electrochemical Validation

    No full text
    The development of innovative electrolytes is a key aspect of improving electrochemical double layer capacitors (EDLCs). New solvents, new conducting salts as well as new ionic liquids need to be considered. To avoid time-consuming “trial and error” experiments, it is desirable to “rationalize” this search for new materials. An important step in this direction is the systematic application of computational screening approaches. Via the fast prediction of the properties of a large number of compounds, for instance all reasonable candidates within a given compound class, such approaches should allow to identify of the most promising candidates for subsequent experiments. In this work we consider the toy system of all reasonable nitrile solvents up to 12 heavy atoms. To investigate if our recently proposed computational screening strategy is a feasible tool for the purpose of rationalizing the search for new EDLC electrolyte materials, we correlatein the case of EDLCs for the first timecomputational screening results with experimental findings. For this, experiments are performed on those compounds for which experimental data is not available from the literature. We find that our screening approach is well suited to pick good candidates out of the set of all reasonable nitriles, comprising almost 5000 compounds

    Insights into Bulk Electrolyte Effects on the Operative Voltage of Electrochemical Double-Layer Capacitors

    No full text
    Electrochemical double-layer capacitors (EDLCs) are robust, high-power, and fast-charging energy storage devices. Rational design of novel electrolyte materials could further improve the performance of EDLCs. Computational methods offer immense scope in aiding the development of such materials. Trends in experimentally observed operative voltages nevertheless remain difficult to predict and understand. We discuss here the intriguing case of adiponitrile (ADN) versus 2-methyl-glutaronitrile (2MGN) based electrolytes, which result in very different operative voltages in EDLCs despite structural similarity. As a preliminary step, bulk electrolyte effects on electrochemical stability are investigated by <i>ab initio</i> molecular dynamics (AIMD) and static, cluster-based quantum chemistry calculations
    corecore