12 research outputs found

    Contribution of LTi and TH17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis

    Get PDF
    Background In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammation-mediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Occurrence of these structures was associated with a more severe disease course and cortical histopathology. We have developed the B cell-dependent MP4-induced experimental autoimmune encephalomyelitis (EAE) as a mouse model to mimic this trait of the human disease. The aim of this study was to determine a potential role of lymphoid tissue inducer (LTi) and TH17 cells in the process of B cell aggregate formation in the MP4 model. Methods We performed flow cytometry of cerebellar and splenic tissue of MP4-immunized mice in the acute and chronic stage of the disease to analyze the presence of CD3−CD5−CD4+RORγt+ LTi and CD3+CD5+CD4+RORγt+ TH17 cells. Myelin oligodendrocyte glycoprotein (MOG):35–55-induced EAE was used as B cell-independent control model. We further determined the gene expression profile of B cell aggregates using laser capture microdissection, followed by RNA sequencing. Results While we were able to detect LTi cells in the embryonic spleen and adult intestine, which served as positive controls, there was no evidence for the existence of such a population in acute or chronic EAE in neither of the two models. Yet, we detected CD3−CD5−CD4−RORγt+ innate lymphoid cells (ILCs) and TH17 cells in the CNS, the latter especially in the chronic stage of MP4-induced EAE. Moreover, we observed a unique gene signature in CNS B cell aggregates compared to draining lymph nodes of MP4-immunized mice and to cerebellum as well as draining lymph nodes of mice with MOG:35–55-induced EAE. Conclusion The absence of LTi cells in the cerebellum suggests that other cells might take over the function as an initiator of lymphoid tissue formation in the CNS. Overall, the development of ectopic lymphoid organs is a complex process based on an interplay between several molecules and signals. Here, we propose some potential candidates, which might be involved in the formation of B cell aggregates in the CNS of MP4-immunized mice

    Sustainable Innovation in a Multi-University Master Course

    Get PDF
    Mobility, multi-locality, and transnational migration are current social developments among the population of the European Union. These social developments in society and companies, linked to the challenges of sustainability, lead to new requirements for working in the European Union. Teaching and learning in higher education needs to adapt to these requirements. As a result, new and innovative teaching and learning practices in higher education should provide competencies for transnational teamwork in the curriculum of tomorrow's engineers in order to ensure their competitiveness in the job market and advantage in their future careers. Thirteen European students from four countries participated in a new project-based course, called the "European Engineering Team". Students focused on the development of two innovative and sustainable products. The goal of this paper is to present the thermal pallet cover, which is the result of the first one-year transnational and sustainability-oriented project. This paper also aims to present the process of performing the project. It provides the overview and discussion of engineering and management tasks that students completed in the transnational environment, working remotely at their own campuses between scheduled transnational meetings. The work contributes to project-oriented learning that may constitute a basis for teaching holistic engineering courses at mechanical and industrial engineering departments

    Clinically practical pharmacometrics computer model to evaluate and personalize pharmacotherapy in pediatric rare diseases: application to Graves' disease

    Get PDF
    ObjectivesGraves' disease (GD) with onset in childhood or adolescence is a rare disease (ORPHA:525731). Current pharmacotherapeutic approaches use antithyroid drugs, such as carbimazole, as monotherapy or in combination with thyroxine hormone substitutes, such as levothyroxine, as block-and-replace therapy to normalize thyroid function and improve patients' quality of life. However, in the context of fluctuating disease activity, especially during puberty, a considerable proportion of pediatric patients with GD is suffering from thyroid hormone concentrations outside the therapeutic reference ranges. Our main goal was to develop a clinically practical pharmacometrics computer model that characterizes and predicts individual disease activity in children with various severity of GD under pharmacotherapy.MethodsRetrospectively collected clinical data from children and adolescents with GD under up to two years of treatment at four different pediatric hospitals in Switzerland were analyzed. Development of the pharmacometrics computer model is based on the non-linear mixed effects approach accounting for inter-individual variability and incorporating individual patient characteristics. Disease severity groups were defined based on free thyroxine (FT4) measurements at diagnosis.ResultsData from 44 children with GD (75% female, median age 11 years, 62% receiving monotherapy) were analyzed. FT4 measurements were collected in 13, 15, and 16 pediatric patients with mild, moderate, or severe GD, with a median FT4 at diagnosis of 59.9 pmol/l (IQR 48.4, 76.8), and a total of 494 FT4 measurements during a median follow-up of 1.89 years (IQR 1.69, 1.97). We observed no notable difference between severity groups in terms of patient characteristics, daily carbimazole starting doses, and patient years. The final pharmacometrics computer model was developed based on FT4 measurements and on carbimazole or on carbimazole and levothyroxine doses involving two clinically relevant covariate effects: age at diagnosis and disease severity.DiscussionWe present a tailored pharmacometrics computer model that is able to describe individual FT4 dynamics under both, carbimazole monotherapy and carbimazole/levothyroxine block-and-replace therapy accounting for inter-individual disease progression and treatment response in children and adolescents with GD. Such clinically practical and predictive computer model has the potential to facilitate and enhance personalized pharmacotherapy in pediatric GD, reducing over- and underdosing and avoiding negative short- and long-term consequences. Prospective randomized validation trials are warranted to further validate and fine-tune computer-supported personalized dosing in pediatric GD and other rare pediatric diseases

    B Cells in Multiple Sclerosis and Virus-Induced Neuroinflammation

    No full text
    Neuroinflammation can be defined as an inflammatory response within the central nervous system (CNS) mediated by a complex crosstalk between CNS-resident and infiltrating immune cells from the periphery. Triggers for neuroinflammation not only include pathogens, trauma and toxic metabolites, but also autoimmune diseases such as neuromyelitis optica spectrum disorders and multiple sclerosis (MS) where the inflammatory response is recognized as a disease-escalating factor. B cells are not considered as the first responders of neuroinflammation, yet they have recently gained focus as a key component involved in the disease pathogenesis of several neuroinflammatory disorders like MS. Traditionally, the prime focus of the role of B cells in any disease, including neuroinflammatory diseases, was their ability to produce antibodies. While that may indeed be an important contribution of B cells in mediating disease pathogenesis, several lines of recent evidence indicate that B cells are multifunctional players during an inflammatory response, including their ability to present antigens and produce an array of cytokines. Moreover, interaction between B cells and other cellular components of the immune system or nervous system can either promote or dampen neuroinflammation depending on the disease. Given that the interest in B cells in neuroinflammation is relatively new, the precise roles that they play in the pathophysiology and progression of different neuroinflammatory disorders have not yet been well-elucidated. Furthermore, the possibility that they might change their function during the course of neuroinflammation adds another level of complexity and the puzzle remains incomplete. Indeed, advancing our knowledge on the role of B cells in neuroinflammation would also allow us to tackle these disorders better. Here, we review the available literature to explore the relationship between autoimmune and infectious neuroinflammation with a focus on the involvement of B cells in MS and viral infections of the CNS

    Effects of a Fully Humanized Type II Anti-CD20 Monoclonal Antibody on Peripheral and CNS B Cells in a Transgenic Mouse Model of Multiple Sclerosis

    No full text
    Successful therapy with anti-CD20 monoclonal antibodies (mAbs) has reinforced the key role of B cells in the immunopathology of multiple sclerosis (MS). This study aimed to determine the effects of a novel class of anti-CD20 mAbs on vascular and extravascular central nervous system (CNS)-infiltrating B cells in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Male hCD20xhIgR3 mice and wild-type C57BL/6 (B6) mice were immunized with human myelin oligodendrocyte glycoprotein (MOG)1–125 to induce EAE. While hCD20xhIgR3 mice were injected intravenously with an anti-human CD20 mAb (5 mg/kg) (rituximab (a type I anti-CD20 mAb) or obinutuzumab (a type II anti-CD20 mAb), B6 mice received the anti-mouse CD20 antibody 18B12. Neither mAb affected clinical disease or serum antibody levels. Obinutuzumab and rituximab had an impact on splenic and CNS-infiltrated B cells with slightly differential depletion efficacy. Additionally, obinutuzumab had beneficial effects on spinal cord myelination. B cell depletion rates in the 18B12/B6 model were comparable with those observed in obinutuzumab-treated hCD20xhIgR3 mice. Our results demonstrate the usefulness of anti-CD20 mAbs for the modulation of B cell-driven peripheral immune response and CNS pathology, with type II antibodies potentially being superior to type I in the depletion of tissue-infiltrating B cells

    Identification of a novel role for matrix metalloproteinase-3 in the modulation of B cell responses in multiple sclerosis

    No full text
    There has been a growing interest in the presence and role of B cell aggregates within the central nervous system of multiple sclerosis patients. However, very little is known about the expression profile of molecules associated with these aggregates and how they might be influencing aggregate development or persistence in the brain. The current study focuses on the effect of matrix metalloproteinase-3, which is associated with B cell aggregates in autopsied multiple sclerosis brain tissue, on B cells. Autopsied brain sections from multiple sclerosis cases and controls were screened for the presence of CD20+ B cell aggregates and expression of matrix metalloproteinase-3. Using flow cytometry, enzyme-linked immunosorbent assay and gene array as methods, in vitro studies were conducted using peripheral blood of healthy volunteers to demonstrate the effect of matrix metalloproteinase-3 on B cells. Autopsied brain sections from multiple sclerosis patients containing aggregates of B cells expressed a significantly higher amount of matrix metalloproteinase-3 compared to controls. In vitro experiments demonstrated that matrix metalloproteinase-3 dampened the overall activation status of B cells by downregulating CD69, CD80 and CD86. Furthermore, matrix metalloproteinase-3-treated B cells produced significantly lower amounts of interleukin-6. Gene array data confirmed that matrix metalloproteinase-3 altered the proliferation and survival profiles of B cells. Taken together, out data indicate a role for B cell modulatory properties of matrix metalloproteinase-3

    Obinutuzumab-Induced B Cell Depletion Reduces Spinal Cord Pathology in a CD20 Double Transgenic Mouse Model of Multiple Sclerosis

    No full text
    B cell-depleting therapies have recently proven to be clinically highly successful in the treatment of multiple sclerosis (MS). This study aimed to determine the effects of the novel type II anti-human CD20 (huCD20) monoclonal antibody (mAb) obinutuzumab (OBZ) on spinal cord degeneration in a B cell-dependent mouse model of MS. Double transgenic huCD20xHIGR3 (CD20dbtg) mice, which express human CD20, were immunised with the myelin fusion protein MP4 to induce experimental autoimmune encephalomyelitis (EAE). Both light and electron microscopy were used to assess myelination and axonal pathology in mice treated with OBZ during chronic EAE. Furthermore, the effects of the already established murine anti-CD20 antibody 18B12 were assessed in C57BL/6 wild-type (wt) mice. In both models (18B12/wt and OBZ/CD20dbtg) anti-CD20 treatment significantly diminished the extent of spinal cord pathology. While 18B12 treatment mainly reduced the extent of axonal pathology, a significant decrease in demyelination and increase in remyelination were additionally observed in OBZ-treated mice. Hence, the data suggest that OBZ could have neuroprotective effects on the CNS, setting the drug apart from the currently available type I anti-CD20 antibodies

    Modeling of levothyroxine in newborns and infants with congenital hypothyroidism: challenges and opportunities of a rare disease multi-center study.

    Get PDF
    Modeling of retrospectively collected multi-center data of a rare disease in pediatrics is challenging because laboratory data can stem from several decades measured with different assays. Here we present a retrospective pharmacometrics (PMX) based data analysis of the rare disease congenital hypothyroidism (CH) in newborns and infants. Our overall aim is to develop a model that can be applied to optimize dosing in this pediatric patient population since suboptimal treatment of CH during the first 2 years of life is associated with a reduced intelligence quotient between 10 and 14 years. The first goal is to describe a retrospectively collected dataset consisting of 61 newborns and infants with CH up to 2 years of age. Overall, 505 measurements of free thyroxine (FT4) and 510 measurements of thyrotropin or thyroid-stimulating hormone were available from patients receiving substitution treatment with levothyroxine (LT4). The second goal is to introduce a scale/location-scale normalization method to merge available FT4 measurements since 34 different postnatal age- and assay-specific laboratory reference ranges were applied. This method takes into account the change of the distribution of FT4 values over time, i.e. a transformation from right-skewed towards normality during LT4 treatment. The third goal is to develop a practical and useful PMX model for LT4 treatment to characterize FT4 measurements, which is applicable within a clinical setting. In summary, a time-dependent normalization method and a practical PMX model are presented. Since there is no on-going or planned development of new pharmacological approaches for CH, PMX based modeling and simulation can be leveraged to personalize dosing with the goal to enhance longer-term neurological outcome in children with the rare disease CH

    Modeling of levothyroxine in newborns and infants with congenital hypothyroidism : challenges and opportunities of a rare disease multi-center study

    No full text
    Modeling of retrospectively collected multi-center data of a rare disease in pediatrics is challenging because laboratory data can stem from several decades measured with different assays. Here we present a retrospective pharmacometrics (PMX) based data analysis of the rare disease congenital hypothyroidism (CH) in newborns and infants. Our overall aim is to develop a model that can be applied to optimize dosing in this pediatric patient population since suboptimal treatment of CH during the first 2 years of life is associated with a reduced intelligence quotient between 10 and 14 years. The first goal is to describe a retrospectively collected dataset consisting of 61 newborns and infants with CH up to 2 years of age. Overall, 505 measurements of free thyroxine (FT4) and 510 measurements of thyrotropin or thyroid-stimulating hormone were available from patients receiving substitution treatment with levothyroxine (LT4). The second goal is to introduce a scale/location-scale normalization method to merge available FT4 measurements since 34 different postnatal age- and assay-specific laboratory reference ranges were applied. This method takes into account the change of the distribution of FT4 values over time, i.e. a transformation from right-skewed towards normality during LT4 treatment. The third goal is to develop a practical and useful PMX model for LT4 treatment to characterize FT4 measurements, which is applicable within a clinical setting. In summary, a time-dependent normalization method and a practical PMX model are presented. Since there is no on-going or planned development of new pharmacological approaches for CH, PMX based modeling and simulation can be leveraged to personalize dosing with the goal to enhance longer-term neurological outcome in children with the rare disease CH.publishe

    A Novel Natural GRAS-Grade Enteric Coating for Pharmaceutical and Nutraceutical products

    Get PDF
    In this study, enteric coatings based exclusively on naturally occurring ingredients were reported. Alginate (Alg) and pectin (Pec) blends with or without naturally occurring glyceride, glycerol monostearate (GMS), were initially used to produce solvent-casted films. Incorporating GMS in the natural polymeric films significantly enhanced significantly the acid-resistance properties in gastric medium. Theophylline tablets coated with Alg-Pec blends without GMS disintegrated shortly after incubation in gastric medium (pH 1.2), leading to a premature and complete release of theophylline. Interestingly, tablets coated with Alg-Pec blends that contain the natural glyceride (GMS) resisted the gastric environment for 2h with minimal drug release (<5%) and disintegrated rapidly following introduction to the intestinal medium, allowing a fast and complete drug release. Furthermore, the coating system proved to be stable for six months under accelerated conditions. These findings are particularly appealing to nutraceutical industry as they provide the foundation to produce naturally-occurring GRAS based enteric coatings with no daily intake limits
    corecore