18 research outputs found

    Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins

    Get PDF
    Lycopene is a lipophilic bioactive compound that has many health benefits but can be challenging to deliver in vivo. To mediate this, delivery strategies should be developed, and protein-stabilized oil-in-water (O/W) emulsions have been suggested to improve the physicochemical stability, bioaccessibility and bioavailability of lycopene. In this research different proteins were compared to determine their impact on the physical stability (droplet size, charge, interfacial rheology) and lycopene retention in canola O/W emulsions. Two were of dairy (whey protein isolate, sodium caseinate) and two of plant (soy and pea protein isolate) origin; plant proteins being of interest due to their wider availability, reduced cost, and lower impact on the environment compared to dairy proteins. Particle size distribution for sodium caseinate and pea protein-stabilized emulsions remained unchanged after 14 days of refrigerated storage, while whey and soy protein isolate-stabilized emulsions became unstable. The droplet charge was largely negative (~ -45 – -60 mV) for all emulsions and the lycopene concentration in plant protein-stabilized emulsions at 14 days of storage was similar to that in sodium caseinate-stabilized emulsions, but significantly higher than that in whey proteinstabilized emulsions. While sodium caseinate formed relatively viscous films at the oil-water interface, the other proteins showed more viscoelastic behaviour. In spite of this difference, both the caseinate and pea protein stabilized emulsions were promising delivery vehicles. This also indicates that plant-derived proteins can be feasible alternatives to dairy emulsifiers

    A novel ultrasonic cavitation enhancer

    Get PDF
    We introduce a Cavitation Intensifying Bag as a versatile tool for acoustic cavitation control. The cavitation activity is spatially controlled by the modification of the inner surface of the bag with patterned pits of microscopic dimensions. We report on different measurements such as the transmission of ultrasound, temperature increase inside the bag during sonication. Several applications of interest to other scientific activities are also demonstrated

    Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof

    Get PDF
    There is a growing interest in using fibrils from food grade protein, e.g. β-lactoglobulin, as functional ingredients. In the present study, the functionality of fibrillar β-lactoglobulin from whey protein isolate (WPI) was compared to native WPI in terms of interfacial dilatational rheology and emulsifying activity at acidic conditions (pH 2.0 and 3.0). We report here for the first time data on microencapsulation of fish oil by spray-drying as well as oxidative stability of the oil in emulsions and microcapsules in dependence of WPI conformation. WPI fibrils exerted a significantly higher elasticity at the oil–water (o/w) interface and a better emulsifying activity at a fixed oil content compared to native WPI. Microencapsulation efficiency was also higher with fibrillar WPI (>95%) compared to native WPI (∼90%) at pH 2.0 and a total oil and protein content of 40% and 2.2%, respectively, in the final powder. The oxidative deterioration was lower in emulsions and microcapsules prepared with fibrillar than with native WPI. This was attributed to improved interfacial barrier properties provided by fibrils and antioxidative effects of coexisting unconverted monomers, particularly hydrophilic peptides

    Technology and Society in Equilibrium:

    Get PDF
    This sector portrait of the design engineering sciences describes the common denominator of the various design disciplines in the Netherlands. In a future sector plan, the above investment areas will be further explored and purposefully developed. The implementation of technological innovations aligned to societal issues encompasses a design challenge. This increasingly demands science-based design methodologies. The broad Dutch design landscape can fulfil the role of connector well in this regard. In order to optimally strengthen this bridging function, three areas for further investment have been identified: Research More research and research funding are needed to meet the design challenges posed by Dutch societal missions, as well as for the further development of Key Enabling Methodologies (KEMs) as the basis for effective design. Educational Capacity Expanded teaching capacity and further development of design-driven didactics are needed to meet the growing demand for designers, This demand stems from the emerging need for design approaches in new research programmes within Horizon Europe and the Dutch Research Council (NWO). Access to Technology Continuous access to the rapidly evolving technological disciplines must be guaranteed for professionals who can both understand the technology and meet the investigative design challenge

    Technologie en Maatschappij in Balans:

    Get PDF
    Dit sectorbeeld van de ontwerpende ingenieurswetenschappen beschrijft de grote gemeenschappelijke deler van de verschillende ontwerpdisciplines in Nederland. In aanloop naar het schrijven van dit sectorbeeld hebben we gezamenlijk bepaald waar onze sterkte ligt, en waar we concreet kunnen bijdragen aan het oplossen van maatschappelijke knelpunten. Implementatie van technologische innovaties in aansluiting op maatschappelijke uitdagingen omvat een ontwerpopgave. Dit vereist in toenemende mate wetenschappelijk onderbouwde ontwerpmethodieken. Het brede Nederlandse ontwerplandschap kan hierbij de rol van verbinder goed vervullen. Teneinde deze brugfunctie optimaal te versterken worden drie gebieden voor verdere investeringen gezien: Onderzoek Er is meer onderzoek en onderzoeksfinanciering nodig voor het volbrengen van ontwerpuitdagingen die in de Nederlandse maatschappelijke missies worden gesteld, evenals voor de verdere ontwikkeling van Key Enabling Methodologies als basis voor effectief ontwerp. Onderwijscapaciteit Er is een ruimere onderwijscapaciteit en verdere ontwikkeling van ontwerp gestuurde didactiek nodig om te kunnen voldoen aan de groeiende vraag naar ontwerpers, een vraag die voortkomt uit de opkomende behoefte aan ontwerpaanpakken in nieuwe onderzoeksprogramma’s binnen Horizon Europe en NWO. Toegang tot technologie Er moet voortdurend toegang gegarandeerd zijn tot de zich snel ontwikkelende technologische disciplines voor professionals die zowel de technologie doorgronden als de onderzoekende ontwerpuitdaging aankunnen. Dit sectorbeeld van de ontwerpende ingenieurswetenschappen beschrijft de grote gemeenschappelijke deler van de verschillende ontwerpdisciplines in Nederland. In een toekomstig sectorplan zullen bovenstaande inversteringsgebieden verder en doelgericht worden uitgewerkt

    Fouling mechanisms of dairy streams during membrane distillation

    Get PDF
    This study reports on fouling mechanisms of skim milk and whey during membrane distillation (MD) using polytetrafluoroethylene (PTFE) membranes. Structural and elemental changes along the fouling layer from the anchorpoint at the membrane to the topsurface of the fouling layer have been investigated using synchrotron IR micro-spectroscopy and electron microscopy with associated energy dispersive X-ray spectroscopy(EDS)Initial adhesion of single components on a membrane representing a PTFEsurface was observed in-situ utilizing reflectometry.Whey components were found to penetrate into the membrane matrix while skim milk fouling remained on top of the membrane. Whey proteins had weaker attractive interaction with the membrane and adhesion depended more on the presence of phosphorus near the membrane surface and throughout to establish the fouling layer. This work has given detailed insight into the fouling mechanisms of MD membranes in major dairy streams, essential for maintaining membrane distillation as operational for acceptable times, therewith allowing further development of this emerging technology

    Effect of Ethanol and Temperature on Partition Coefficients of Ethyl Acetate, Isoamyl Acetate, and Isoamyl Alcohol: Instrumental and Predictive Investigation

    No full text
    For alcoholic beverages such as beer, downstream processing for either dealcoholization or off-flavor removal requires both quantitative data and suitable predictive methods. Along with experimental investigations, we use a method initially developed for studying the solubility of gases in two or more miscible liquid solvents to monitor the effect of ethanol on air-water partition coefficients of three major flavors found in beer, namely, isoamyl alcohol, ethyl acetate, and isoamyl acetate. In the ethanol concentration range between 0 and 0.1 mole fraction, a slight, rather linear increase in the Henry's solubility coefficient was observed. This overall behavior can be captured well using Henry coefficients for aqueous binary and ternary systems together with the Wohl expansion for excess Gibbs free energy coupled with the one-parameter Margules equation. Based on the developed model, the Wohl's expansion parameter for ethanol-water is introduced as the solvent-solvent interaction parameter. The van 't Hoff parameters for temperature dependence of Henry coefficients for binary water-flavor solutions are determined in the range of 30 to 60 °C.</p

    Flavor Retention and Release from Beverages : A Kinetic and Thermodynamic Perspective

    No full text
    For the investigation of retention and release of flavor components, various methods are available, which are mostly used on a case-to-case basis depending on the raw material. These effects that originate from kinetics and thermodynamics could be put in a much wider perspective if these fields were taken as a starting point of investigation in combination with rigorous data analysis. In this Review, we give an overview of experimental techniques and data analysis methods, and predictive methods using mass transfer techniques are also discussed in detail. We use this as a foundation to discuss the interactions between volatile flavors and the matrix of liquid foods/beverages. Lipids present in the form of an emulsion are the strongest volatile retainers due to the lipophilic nature of most of the volatile flavors. Proteins also have flavor retention properties, whereas carbohydrates hardly have a retention effect in beverages. Smaller components, such as sugars and salts, can change the water activity, thereby facilitating flavor release. Alternatively, salts can also indirectly affect binding sites of proteins leading to release (e.g., NaCl and Na2SO4) or retention (NaCSN and Cl3CCOONa) of flavors. Furthermore, the effects of temperature and pH are discussed. The Review concludes with a critical section on determination of parameters relevant to flavor release. We highlight the importance of accurate determination of low concentrations when using linearization methods and also show that there is an intrinsic preference for nonlinear regression methods that are much less sensitive to measurement error.</p

    Effect of Ethanol and Temperature on Partition Coefficients of Ethyl Acetate, Isoamyl Acetate, and Isoamyl Alcohol: Instrumental and Predictive Investigation

    No full text
    <p>For alcoholic beverages such as beer, downstream processing for either dealcoholization or off-flavor removal requires both quantitative data and suitable predictive methods. Along with experimental investigations, we use a method initially developed for studying the solubility of gases in two or more miscible liquid solvents to monitor the effect of ethanol on air-water partition coefficients of three major flavors found in beer, namely, isoamyl alcohol, ethyl acetate, and isoamyl acetate. In the ethanol concentration range between 0 and 0.1 mole fraction, a slight, rather linear increase in the Henry's solubility coefficient was observed. This overall behavior can be captured well using Henry coefficients for aqueous binary and ternary systems together with the Wohl expansion for excess Gibbs free energy coupled with the one-parameter Margules equation. Based on the developed model, the Wohl's expansion parameter for ethanol-water is introduced as the solvent-solvent interaction parameter. The van 't Hoff parameters for temperature dependence of Henry coefficients for binary water-flavor solutions are determined in the range of 30 to 60 °C.</p
    corecore