25,741 research outputs found

    Which values should be built into economic measures?

    Get PDF
    Many economic measures are structured to reflect ethical values. I describe three attitudes towards this: maximalism, according to which we should aim to build all relevant values into measures; minimalism, according to which we should aim to keep values out of measures; and an intermediate view. I argue the intermediate view is likely correct, but existing versions are inadequate. In particular, economists have strong reason to structure measures to reflect fixed, as opposed to user-assessable, values. This implies that, despite disagreement about precisely how to do so, economists should standardly adjust QALYs and DALYs to reflect egalitarian values

    Public Trust in Science: Exploring the Idiosyncrasy-Free Ideal

    Get PDF
    What makes science trustworthy to the public? This chapter examines one proposed answer: the trustworthiness of science is based at least in part on its independence from the idiosyncratic values, interests, and ideas of individual scientists. That is, science is trustworthy to the extent that following the scientific process would result in the same conclusions, regardless of the particular scientists involved. We analyze this "idiosyncrasy-free ideal" for science by looking at philosophical debates about inductive risk, focusing on two recent proposals which offer different methods of avoiding idiosyncrasy: the high epistemic standards proposal and the democratic values proposal

    Modeling and Analyzing Adaptive User-Centric Systems in Real-Time Maude

    Full text link
    Pervasive user-centric applications are systems which are meant to sense the presence, mood, and intentions of users in order to optimize user comfort and performance. Building such applications requires not only state-of-the art techniques from artificial intelligence but also sound software engineering methods for facilitating modular design, runtime adaptation and verification of critical system requirements. In this paper we focus on high-level design and analysis, and use the algebraic rewriting language Real-Time Maude for specifying applications in a real-time setting. We propose a generic component-based approach for modeling pervasive user-centric systems and we show how to analyze and prove crucial properties of the system architecture through model checking and simulation. For proving time-dependent properties we use Metric Temporal Logic (MTL) and present analysis algorithms for model checking two subclasses of MTL formulas: time-bounded response and time-bounded safety MTL formulas. The underlying idea is to extend the Real-Time Maude model with suitable clocks, to transform the MTL formulas into LTL formulas over the extended specification, and then to use the LTL model checker of Maude. It is shown that these analyses are sound and complete for maximal time sampling. The approach is illustrated by a simple adaptive advertising scenario in which an adaptive advertisement display can react to actions of the users in front of the display.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Crackling Noise in Fractional Percolation -- Randomly distributed discontinuous jumps in explosive percolation

    Full text link
    Crackling noise is a common feature in many systems that are pushed slowly, the most familiar instance of which is the sound made by a sheet of paper when crumpled. In percolation and regular aggregation clusters of any size merge until a giant component dominates the entire system. Here we establish `fractional percolation' where the coalescence of clusters that substantially differ in size are systematically suppressed. We identify and study percolation models that exhibit multiple jumps in the order parameter where the position and magnitude of the jumps are randomly distributed - characteristic of crackling noise. This enables us to express crackling noise as a result of the simple concept of fractional percolation. In particular, the framework allows us to link percolation with phenomena exhibiting non-self-averaging and power law fluctuations such as Barkhausen noise in ferromagnets.Comment: non-final version, for final see Nature Communications homepag

    NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.

    Get PDF
    Inactivating germline mutations in the tumor suppressor gene NF2 cause the hereditary syndrome neurofibromatosis 2, which is characterized by the development of neoplasms of the nervous system, most notably bilateral vestibular schwannoma. Somatic NF2 mutations have also been reported in a variety of cancers, but interestingly these mutations do not cause the same tumors that are common in hereditary neurofibromatosis 2, even though the same gene is involved and there is overlap in the site of mutations. This review highlights cancers in which somatic NF2 mutations have been found, the cell signaling pathways involving NF2/merlin, current clinical trials treating neurofibromatosis 2 patients, and preclinical findings that promise to lead to new targeted therapies for both cancers harboring NF2 mutations and neurofibromatosis 2 patients

    Polysemy in Advertising

    Get PDF
    The article reviews the conceptual foundations of advertising polysemy – the occurrence of different interpretations for the same advertising message. We discuss how disciplines as diverse as psychology, semiotics and literary theory have dealt with the issue of polysemy, and provide translations and integration among these multiple perspectives. From such review we draw recurrent themes to foster future research in the area and to show how seemingly opposed methodological and theoretical perspectives complement and extend each other. Implications for advertising research and practice are discussed.Advertising;Polysemy;Semiotics

    Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    Full text link
    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.Comment: 13 pages, 7 figure

    The dynamic analysis of submerged structures

    Get PDF
    Methods are described by which the dynamic interaction of structures with surrounding fluids can be computed by using finite element techniques. In all cases, the fluid is assumed to behave as an acoustic medium and is initially stationary. Such problems are solved either by explicitly modeling the fluid (using pressure or displacement as the basic fluid unknown) or by using decoupling approximations which take account of the fluid effects without actually modeling the fluid
    corecore