22,421 research outputs found

    Absorbable-susceptor joining of ceramic surfaces

    Get PDF
    An assembly of ceramic surfaces particularly refractory metal oxides and carbides, abutting a thin sheet of metal susceptor material are placed in a chamber of an enclosure containing inert gas. An RF coil is activated by power supply to melt the susceptor and adjacent zones of the ceramic. Reactive gas such as oxygen or a carbonizing gas is then fed to the chamber and reacts with the susceptor to form compounds which disperse and dissolve in the zones. On cooling, a strong joint is formed. The susceptor may contain inner perforations and outer perforations to aid in distribution of heat

    Experimental studies of Strong Electroweak Symmetry Breaking in gauge boson scattering and three gauge boson production

    Full text link
    If no light Higgs boson exist, the interaction among the gauge bosons becomes strong at high energies (~1TeV). The effects of strong electroweak symmetry breaking (SEWSB) could manifest themselves as anomalous couplings before they give rise to new physical states, thus measurement of all couplings and their possible deviation from Standard Model (SM) values could give valuable information for understanding the true nature of symmetry breaking sector. Here we present a detailed study of the measurement of quartic gauge couplings in weak boson scattering processes and a possibility for same measurement in triple weak boson production. Expected limits on the parameters alpha_4 alpha_5,alpha_6, alpha_7 and alpha_10 in electroweak chiral Lagrangian are given.Comment: talk presented at LCWS05, Stanford, USA, March 200

    A survey of stellar X-ray flares from the XMM-Newton serendipitous source catalogue: Hipparcos-Tycho cool stars

    Full text link
    The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. The 2XMM Catalogue and the associated time-series (`light-curve') data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. The flares range in duration from ~1e3 to ~1e4 s, have peak X-ray fluxes from ~1e-13 to ~1e-11 erg/cm2/s, peak X-ray luminosities from ~1e29 to ~1e32 erg/s, and X-ray energy output from ~1e32 to ~1e35 erg. Most of the ~30 serendipitously-observed stars have little previously reported information. The hardness-ratio plots clearly illustrate the spectral (and hence inferred temperature) variations characteristic of many flares, and provide an easily accessible overview of the data. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics; in addition, they allow us to predict numbers of stellar flares that may be detected in future X-ray wide-field surveys. The serendipitous sample demonstrates the need for care when calculating flaring rates.Comment: 26 pages, 24 figures. Additional tables and figures available as 4 ancillary files. To be published in Astronomy and Astrophysic

    Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    Full text link
    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.Comment: 13 pages, 7 figure

    On the t-Term Rank of a Matrix

    Full text link
    For t a positive integer, the t-term rank of a (0,1)-matrix A is defined to be the largest number of 1s in A with at most one 1 in each column and at most t 1s in each row. Thus the 1-term rank is the ordinary term rank. We generalize some basic results for the term rank to the t-term rank, including a formula for the maximum term rank over a nonempty class of (0,1)-matrices with the the same row sum and column sum vectors. We also show the surprising result that in such a class there exists a matrix which realizes all of the maximum terms ranks between 1 and t.Comment: 18 page

    Quantum stabilization of Z-strings, a status report on D=3+1 dimensions

    Full text link
    We investigate an extension to the phase shift formalism for calculating one-loop determinants. This extension is motivated by requirements of the computation of Z-string quantum energies in D=3+1 dimensions. A subtlety that seems to imply that the vacuum polarization diagram in this formalism is (erroneously) finite is thoroughly investigated.Comment: Based on talk by O.S. at QFEXT07, Leipzig Sept. 2007. 8 page
    • …
    corecore