90 research outputs found

    A case of advanced infantile myofibromatosis harboring a novel MYH10‐RET fusion

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137282/1/pbc26377_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137282/2/pbc26377.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137282/3/pbc26377-sup-0002-text.pd

    Acquired Resistance to KRAS (G12C) Inhibition in Cancer

    Get PDF
    BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRAS(G12C)). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRAS(G12C) -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRAS(G12C) inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRAS(G12C) allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRAS(G12C) inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRAS(G12C) inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.)

    Optimized EGFR blockade strategies in <i>EGFR</i> addicted gastroesophageal adenocarcinomas

    Get PDF
    Purpose: Gastric and gastroesophageal adenocarcinomas represent the third leading cause of cancer mortality worldwide. Despite significant therapeutic improvement, the outcome of patients with advanced gastroesophageal adenocarcinoma is poor. Randomized clinical trials failed to show a significant survival benefit in molecularly unselected patients with advanced gastroesophageal adenocarcinoma treated with anti-EGFR agents.Experimental Design: We performed analyses on four cohorts: IRCC (570 patients), Foundation Medicine, Inc. (9,397 patients), COG (214 patients), and the Fondazione IRCCS Istituto Nazionale dei Tumori (206 patients). Preclinical trials were conducted in patient-derived xenografts (PDX).Results: The analysis of different gastroesophageal adenocarcinoma patient cohorts suggests that EGFR amplification drives aggressive behavior and poor prognosis. We also observed that EGFR inhibitors are active in patients with EGFR copy-number gain and that coamplification of other receptor tyrosine kinases or KRAS is associated with worse response. Preclinical trials performed on EGFR-amplified gastroesophageal adenocarcinoma PDX models revealed that the combination of an EGFR mAb and an EGFR tyrosine kinase inhibitor (TKI) was more effective than each monotherapy and resulted in a deeper and durable response. In a highly EGFR-amplified nonresponding PDX, where resistance to EGFR drugs was due to inactivation of the TSC2 tumor suppressor, cotreatment with the mTOR inhibitor everolimus restored sensitivity to EGFR inhibition.Conclusions: This study underscores EGFR as a potential therapeutic target in gastric cancer and identifies the combination of an EGFR TKI and a mAb as an effective therapeutic approach. Finally, it recognizes mTOR pathway activation as a novel mechanism of primary resistance that can be overcome by the combination of EGFR and mTOR inhibitors

    Extraordinary clinical benefit to sequential treatment with targeted therapy and immunotherapy of a BRAF V600E and PD-L1 positive metastatic lung adenocarcinoma

    No full text
    Abstract Background The treatment algorithm for metastatic non-small cell lung cancers (NSCLCs) has been evolving rapidly due to the development of new therapeutic agents. Although guidelines are provided by National Comprehensive Cancer Network (NCCN) for treatment options according to biomarker testing results, sequentially applying the three main modalities (chemotherapy, targeted therapy and immunotherapy) remains an ad hoc practice in clinic. In light of recent FDA approval of dabrafenib and trametinib combination for metastatic NSCLCs with BRAF V600E mutation, one question arises due to insufficient clinical data is if the targeted therapy should be used before immunotherapy in patients with both BRAF V600E and PD-L1 expression. Case presentation We present a case of 74-year-old female, former smoker with metastatic lung adenocarcinoma. The BRAF V600E mutation among other abnormalities was identified by comprehensive genomic profiling. The patient had an excellent 2-year response to the combination of pemetrexed and sorafenib. The patient was then treated with dabrafenib due to the presence of the BRAF V600E mutation and intolerance to cytotoxic chemotherapy. Not only the patient had an 18-month durable response to dabrafenib, she experienced outstanding quality of life with no serious adverse effects. At the time of symptomatic progression, the patient was then treated with two cycles of pembrolizumab based on her positive PD-L1 staining (90%). She had early response and came off pembrolizumab due to side effects. Seven months after initiation of pembrolizumab, the patient is off all the therapy and is currently asymptomatic. The patient is surviving with metastatic disease for over 7 years as of to date. Conclusions By appropriately sequencing the three main modalities of systemic therapies, we are able to achieve long-term disease control with minimal side effects even in a geriatric patient with multiple comorbidities. We argue that it is reasonable to first use a BRAF inhibitor before considering immunotherapy for NSCLCs positive for both BRAF V600E and PD-L1

    A High Percentage of NSCLC With Germline CHEK2 Mutation Harbors Actionable Driver Alterations: Survey of a Cancer Genomic Database and Review of Literature.

    No full text
    INTRODUCTION: Germline CHEK2 mutations are rare and have not been associated with increased risk of NSCLC. METHODS: We identified two sequential primary NSCLCs harboring distinct actionable driver alterations (EGFR E746 _S752 delinsV and CD74-ROS1) in a patient with NSCLC with a novel germline CHEK2 mutation S5fs∗54 (c.14_20delCGGATGT). We queried a genomic database of NSCLC samples profiled by plasma next-generation sequencing (Foundation Medicine Inc.) and performed a literature search of germline CHEK2 mutations in NSCLC. RESULTS: Of 6101 patients with unique NSCLC profiled by plasma next-generation sequencing, 53 cases (0.87%) of germline CHEK2 mutation were identified (male-to-female ratio, 49%:51%; median age&nbsp;= 75 y). The median allele&nbsp;frequency of CHEK2 was 49% (interquartile range: 49%-51%). Ten unique CHEK2 germline mutations were identified. Literature review identified 15 additional cases of germline CHEK2 mutations in NSCLC. Overall, a total of 70 CHEK2 germline mutations (21 unique CHEK2 alterations) were identified. Among these 70 CHEK2 germline mutations, 54.3% were amino acid substitutions (point mutation), 40.0% were frameshift mutations, and 5.7% were splice site mutations. Of these 70 total cases assessed, 29 (41.4%) potentially actionable driver alterations were identified with KRAS G12C mutation (27.6%) being the most common and KRAS G12A/C/D/R/S/V mutations together constituting 51.7% of these driver mutations. CONCLUSIONS: Germline CHEK2 mutations are rare in NSCLC. A large proportion of these cases harbor actionable driver alterations. The relationship between germline CHEK2 mutations and actionable driver alterations in NSCLC may be worth further investigation
    corecore