88 research outputs found

    Density Field Reconstruction of an Overexpanded Supersonic Jet using Tomographic Background-Oriented Schlieren

    Full text link
    A Tomographic Background-Oriented Schlieren (TBOS) technique is developed to aid in the visualization of compressible flows. An experimental setup was devised around a sub-scale rocket nozzle, in which four cameras were set up in a circular configuration with 30{\deg} angular spacing in azimuth. Measurements were taken of the overexpanded supersonic jet plume at various nozzle pressure ratios (NPR), corresponding to different flow regimes during the start-up and shut-down of rocket nozzles. Measurements were also performed for different camera parameters using different exposure times and f-stops in order to study the effect of measurement accuracy. Density gradients and subsequently two-dimensional line-of-sight integrated density fields for each of the camera projections are recovered from the index of refraction field by solving a Poisson equation. The results of this stage are then used to reconstruct two-dimensional slices of the (time-averaged) density field using a tomographic reconstruction algorithm employing the filtered back-projection and the simultaneous algebraic reconstruction technique. By stacking these two-dimensional slices, the (quasi-) three-dimensional density field is obtained. The accuracy of the implemented method with a relatively low number of sparse cameras is briefly assessed and basic flow features are extracted such as the shock spacing in the overexpanded jet plume

    An experimental realisation of steady spanwise forcing for turbulent drag reduction

    Full text link
    We present an experimental realisation of spatial spanwise forcing in a turbulent boundary layer flow, aimed at reducing the frictional drag. The forcing is achieved by a series of spanwise running belts, running in alternating spanwise direction, thereby generating a steady spatial square-wave forcing. Stereoscopic particle image velocimetry is used to investigate the impact of actuation on the flow in terms of turbulence statistics, performance characteristics, and spanwise velocity profiles, for a waveform of λx+=401\lambda_x^+ = 401. An extension of the classical spatial Stokes layer theory is proposed based on the linear superposition of Fourier modes to describe the non-sinusoidal boundary condition. The experimentally obtained spanwise profiles show good agreement with the extended theoretical model. In line with reported numerical studies, we confirm that a significant flow control effect can be realised with this type of forcing. The results reveal a maximum drag reduction of 26% and a maximum net power savings of 8%. In view of the limited spatial extent of the actuation surface in the current setup, the drag reduction is expected to increase further as a result of its streamwise transient. The second-order turbulence statistics are attenuated up to a wall-normal height of y+100y^+ \approx 100, with a maximum streamwise stress reduction of 44% and a reduction of integral turbulence kinetic energy production of 39%

    Icy moons' geysers: from laboratory to theory

    Get PDF
    Stars and planetary system

    Simulating Enceladus' plumes

    Get PDF
    Stars and planetary system

    Wp-2 basic investigation of transition effect

    Get PDF
    An important goal of the TFAST project was to study the effect of the location of transition in relation to the shock wave on the separation size, shock structure and unsteadiness of the interaction area. Boundary layer tripping (by wire or roughness) and flow control devices (Vortex Generators and cold plasma) were used for boundary layer transition induction. As flow control devices were used here in the laminar boundary layer for the first time, their effectiveness in transition induction was an important outcome. It was intended to determine in what way the application of these techniques induces transition. These methods should have a significantly different effect on boundary layer receptivity, i.e. the transition location. Apart from an improved understanding of operation control methods, the main objective was to localize the transition as far downstream as possible while ensuring a turbulent character of interaction. The final objective, involving all the partners, was to build a physical model of transition control devices. Establishing of such model would simplify the numerical approach to flow cases using such devices. This undertaking has strong support from the industry, which wants to include these control devices in the design process. Unfortunately only one method of streamwise vortices was developed and investigated in the presented study
    corecore