41 research outputs found

    Agricultural peatlands: towards a greenhouse gas sink - a synthesis of a Dutch landscape study

    Get PDF
    It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and -1.7 (±1.8) g CO2-eq m-2 d-1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m-2 d-1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40–60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha-1 yr-1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha-1 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4. Overall, this study suggests that managed peatlands are large sources of GHGs and C, but, if appropriate measures are taken, they can be turned back into GHG and C sinks within 15 years of abandonment and rewetting. The shift from an intensively managed grass-on-peat area (Oukoop) to an extensively managed one (Stein) reduced the GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased

    The uncertain climate footprint of wetlands under human pressure

    Get PDF
    Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems,making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse– response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange

    Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements

    No full text
    Annual terrestrial balances of methane (CH4) and nitrous oxide (N2O) are presented for a managed fen meadow in the Netherlands for 2006, 2007 and 2008, using eddy covariance (EC) flux measurements. Annual emissions derived from different methods are compared. The most accurate annual CH4 flux is achieved by gap filling EC fluxes with an empirical multivariate regression model, with soil temperature and mean wind velocity as driving variables. This model explains about 60% of the variability in observed daily CH4 fluxes. Annual N2O emissions can be separated into background emissions and event emissions due to fertilization. The background emission is estimated using a multivariate regression model also based on EC flux data, with soil temperature and mean wind velocity as driving variables. The event emissions are estimated using emission factors. The minimum direct emission factor is derived for six fertilization events by subtracting the background emission, and the IPCC default emission factor of 1% is used for the other events. In addition, the maximum direct emission factors are determined for the six events without subtracting the background emission. The average direct emission factor ranges from 1.2 to 2.8%, which is larger than the IPCC default value. Finally, the total terrestrial greenhouse gas balance is estimated at 16 Mg ha-1 year-1 in CO2-equivalents with contributions of 30, 25 and 45% by CO2, CH4 and N2O, respectively

    Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat

    No full text
    Fluxes of methane (CH4) and carbon dioxide (CO2) estimated by empirical models based on small-scale chamber measurements were compared to large-scale eddy covariance (EC) measurements for CH4 and to a combination of EC measurements and EC-based models for CO2. The experimental area was a flat peat meadow in the Netherlands with heterogeneous source strengths for both greenhouse gases. Two scenarios were used to assess the importance of stratifying the landscape into landscape elements before up-scaling the fluxes measured by chambers to landscape scale: one took the main landscape elements into account (field, ditch edge ditch), the other took only the field into account. Non-linear regression models were used to up-scale the chamber measurements to field emission estimates. EC CO2 respiration consisted of measured night time EC fluxes and modeled day time fluxes using the Arrhenius model. EC CH4 flux estimate was based on daily averages and the remaining data gaps were filled by linear interpolation. The EC and chamber-based estimates agreed well when the three landscape elements were taken into account with 16.5% and 13.0% difference for CO2 respiration and CH4, respectively. However, both methods differed 31.0% and 55.1% for CO2 respiration and CH4 when only field emissions were taken into account when up-scaling chamber measurements to landscape scale. This emphasizes the importance of stratifying the landscape into landscape elements. The conclusion is that small-scale chamber measurements can be used to estimate fluxes of CO2 and CH4 at landscape scale if fluxes are scaled by different landscape element

    The uncertain climate footprint of wetlands under human pressure

    No full text
    Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange

    BeĂŻnvloeden van landgebonden broeikasgasemissies : Naar een klimaatneutrale(re) inrichting van het landelijke gebied

    No full text
    Onderzocht is of mitigatie mogelijk terug te dringen is in de veenweidegebieden en of het door de vastlegging van koolstof in bossen te verhogen is. Daarnaast is bepaald wat de effecten zijn van het Nederlandse landgebruik in de toekomst (scenario's) op de broeikasemissie
    corecore