11 research outputs found

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions

    No full text
    International audienceFibrous collagen networks are well known to play a central role in the passive biomechanical response of soft connective tissues to applied loads. In the current chapter we focus on vascular tissues and share our extensive experience in coupling mechanical loading and multi-photon imaging to investigate, across arteries, species and testing conditions, how collagen fibers move in response to mechanical loading. More specifically, we assess the deformations of collagen networks in rabbit, porcine or human arteries under different loading scenarios: uniaxial tension on flat samples, tension-inflation on tubular samples, bulge inflation on flat samples. We always observe that collagen fibers exhibit a wavy or crimped shape in load-free conditions, and tend to uncrimp when loads are applied, engaging sequentially to become the main load-bearing component. This sequential engagement, which is responsible for the nonlinear mechanical behaviour, is essential for an artery to function normally and appears to be less pronounced for arteries in elderly and aneurysmal patients. Although uncrimping of collagen fibers is a universal mechanism, we also observe large fiber rotations specific to tensile loading, with significant realignment along the loading axis. A unified approach is proposed to compare observations and quantitative analyses as the type of image processing may affect significantly the estimation of collagen fiber deformations. In summary, this chapter makes an important review of the basic roles of arterial microstructure and its deformations on the global mechanical response. Eventually, directions for future studies combining mechanical loading and multi-photon imaging are suggested, with the aim of addressing open questions related to tissue adaptation and rupture

    Biomechanics and modeling of tissue-engineered heart valves

    No full text
    Heart valve tissue engineering (HVTE) is a promising technique to overcome the limitations of currently available heart valve prostheses. However, before clinical use, still several challenges need to be overcome. The functionality of the developed replacements is determined by their biomechanical properties and, ultimately, by their collagen architecture. Unfortunately, current techniques are often not able to induce a physiological tissue remodeling, which compromises the long-term functionality. Therefore, a deeper understanding of the process of tissue remodeling is required to optimize the phenomena involved via improving the current HVTE approaches. Computational simulations can help in this process, being a valuable and versatile tool to predict and understand experimental results. This chapter first describes the similarities and differences in functionality and biomechanical properties between native and tissue-engineered heart valves. Secondly, the current status of computational models for collagen remodeling is addressed and, finally, future directions and implications for HVTE are suggested
    corecore