11,277 research outputs found
In search for a perfect shape of polyhedra: Buffon transformation
For an arbitrary polygon consider a new one by joining the centres of
consecutive edges. Iteration of this procedure leads to a shape which is affine
equivalent to a regular polygon. This regularisation effect is usually ascribed
to Count Buffon (1707-1788). We discuss a natural analogue of this procedure
for 3-dimensional polyhedra, which leads to a new notion of affine -regular
polyhedra. The main result is the proof of existence of star-shaped affine
-regular polyhedra with prescribed combinatorial structure, under partial
symmetry and simpliciality assumptions. The proof is based on deep results from
spectral graph theory due to Colin de Verdiere and Lovasz.Comment: Slightly revised version with added example of pentakis dodecahedro
Anisotropic Electron Spin Lifetime in (In,Ga)As/GaAs (110) Quantum Wells
Anisotropic electron spin lifetimes in strained undoped (In,Ga)As/GaAs (110)
quantum wells of different width and height are investigated by time-resolved
Faraday rotation and time-resolved transmission and are compared to the
(001)-orientation. From the suppression of spin precession, the ratio of
in-plane to out-of-plane spin lifetimes is calculated. Whereas the ratio
increases with In concentration in agreement with theory, a surprisingly high
anisotropy of 480 is observed for the broadest quantum well, when expressed in
terms of spin relaxation times.Comment: 4 pages, 4 figures, revise
Kinematically Redundant Octahedral Motion Platform for Virtual Reality Simulations
We propose a novel design of a parallel manipulator of Stewart Gough type for
virtual reality application of single individuals; i.e. an omni-directional
treadmill is mounted on the motion platform in order to improve VR immersion by
giving feedback to the human body. For this purpose we modify the well-known
octahedral manipulator in a way that it has one degree of kinematical
redundancy; namely an equiform reconfigurability of the base. The instantaneous
kinematics and singularities of this mechanism are studied, where especially
"unavoidable singularities" are characterized. These are poses of the motion
platform, which can only be realized by singular configurations of the
mechanism despite its kinematic redundancy.Comment: 13 pages, 6 figure
A laser gyroscope system to detect the Gravito-Magnetic effect on Earth
Large scale square ring laser gyros with a length of four meters on each side
are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the
regime required to measure the gravitomagnetic effect (Lense Thirring) of the
Earth. For an ensemble of linearly independent gyros each measurement signal
depends upon the orientation of each single axis gyro with respect to the
rotational axis of the Earth. Therefore at least 3 gyros are necessary to
reconstruct the complete angular orientation of the apparatus. In general, the
setup consists of several laser gyroscopes (we would prefer more than 3 for
sufficient redundancy), rigidly referenced to each other. Adding more gyros for
one plane of observation provides a cross-check against intra-system biases and
furthermore has the advantage of improving the signal to noise ratio by the
square root of the number of gyros. In this paper we analyze a system of two
pairs of identical gyros (twins) with a slightly different orientation with
respect to the Earth axis. The twin gyro configuration has several interesting
properties. The relative angle can be controlled and provides a useful null
measurement. A quadruple twin system could reach a 1% sensitivity after 3:2
years of data, provided each square ring has 6 m length on a side, the system
is shot noise limited and there is no source for 1/f- noise.Comment: 9 pages, 6 figures. 2010 Honourable mention of the Gravity Research
Foundation; to be published on J. Mod. Phys.
The influence of self-citation corrections on Egghe's g index
The g index was introduced by Leo Egghe as an improvement of Hirsch's index h
for measuring the overall citation record of a set of articles. It better takes
into account the highly skewed frequency distribution of citations than the h
index. I propose to sharpen this g index by excluding the self-citations. I
have worked out nine practical cases in physics and compare the h and g values
with and without self-citations. As expected, the g index characterizes the
data set better than the h index. The influence of the self-citations appears
to be more significant for the g index than for the h index.Comment: 9 pages, 2 figures, submitted to Scientometric
Simulation study of a highly efficient, high resolution X-ry sensor based on self-organizing aluminum oxide
State of the art X-ray imaging sensors comprise a trade-off between the
achievable efficiency and the spatial resolution. To overcome such limitations,
the use of structured and scintillator filled aluminum oxide (AlOx) matrices
has been investigated. We used Monte-Carlo (MC) X-ray simulations to determine
the X-ray imaging quality of these AlOx matrices. Important factors which
influence the behavior of the matrices are: filling factor (surface ratio
between channels and 'closed' AlOx), channel diameter, aspect ratio, filling
material etc. Therefore we modeled the porous AlOx matrix in several different
ways with the MC X-ray simulation tool ROSI [1] and evaluated its properties to
investigate the achievable performance at different X-ray spectra, with
different filling materials (i.e. scintillators) and varying channel height and
pixel readout. In this paper we focus on the quantum efficiency, the spatial
resolution and image homogeneity
Design of small Stirling dynamic isotope power system for robotic space missions
Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory
Delays in dwarf novae I: The case of SS Cygni
Using the disc instability model and a simple but physically reasonable model
for the X-ray, extreme UV, UV and optical emission of dwarf novae we
investigate the time lags observed between the rise to outburst at different
wavelengths. We find that for ``normal'', i.e. fast-rise outbursts, there is
good agreement between the model and observations provided that the disc is
truncated at a few white dwarf radii in quiescence, and that the viscosity
parameter alpha is ~0.02 in quiescence and ~0.1 in outburst. In particular, the
increased X-ray flux between the optical and EUV rise and at the end of an
outburst, is a natural outcome of the model. We cannot explain, however, the
EUV delay observed in anomalous outbursts because the disc instability model in
its standard alpha-prescription form is unable to produce such outbursts. We
also find that the UV delay is, contrary to common belief, slightly longer for
inside-out than for outside-in outbursts, and that it is not a good indicator
of the outburst type.Comment: 14 pages, 9 figures, accepted for publication in A&
- âŠ