13,968 research outputs found

    A 1.82 m^2 ring laser gyroscope for nano-rotational motion sensing

    Full text link
    We present a fully active-controlled He-Ne ring laser gyroscope, operating in square cavity 1.35 m in side. The apparatus is designed to provide a very low mechanical and thermal drift of the ring cavity geometry and is conceived to be operative in two different orientations of the laser plane, in order to detect rotations around the vertical or the horizontal direction. Since June 2010 the system is active inside the Virgo interferometer central area with the aim of performing high sensitivity measurements of environmental rotational noise. So far, continuous not attempted operation of the gyroscope has been longer than 30 days. The main characteristics of the laser, the active remote-controlled stabilization systems and the data acquisition techniques are presented. An off-line data processing, supported by a simple model of the sensor, is shown to improve the effective long term stability. A rotational sensitivity at the level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the required specification for the improvement of the Virgo suspension control system, is demonstrated for the configuration where the laser plane is horizontal

    In search for a perfect shape of polyhedra: Buffon transformation

    Get PDF
    For an arbitrary polygon consider a new one by joining the centres of consecutive edges. Iteration of this procedure leads to a shape which is affine equivalent to a regular polygon. This regularisation effect is usually ascribed to Count Buffon (1707-1788). We discuss a natural analogue of this procedure for 3-dimensional polyhedra, which leads to a new notion of affine BB-regular polyhedra. The main result is the proof of existence of star-shaped affine BB-regular polyhedra with prescribed combinatorial structure, under partial symmetry and simpliciality assumptions. The proof is based on deep results from spectral graph theory due to Colin de Verdiere and Lovasz.Comment: Slightly revised version with added example of pentakis dodecahedro

    Persistence in fluctuating environments

    Get PDF
    Understanding under what conditions interacting populations, whether they be plants, animals, or viral particles, coexist is a question of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt coexistence. To better understand this interplay between these deterministic and stochastic forces, we develop a mathematical theory extending the nonlinear theory of permanence for deterministic systems to stochastic difference and differential equations. Our condition for coexistence requires that there is a fixed set of weights associated with the interacting populations and this weighted combination of populations' invasion rates is positive for any (ergodic) stationary distribution associated with a subcollection of populations. Here, an invasion rate corresponds to an average per-capita growth rate along a stationary distribution. When this condition holds and there is sufficient noise in the system, we show that the populations approach a unique positive stationary distribution. Moreover, we show that our coexistence criterion is robust to small perturbations of the model functions. Using this theory, we illustrate that (i) environmental noise enhances or inhibits coexistence in communities with rock-paper-scissor dynamics depending on correlations between interspecific demographic rates, (ii) stochastic variation in mortality rates has no effect on the coexistence criteria for discrete-time Lotka-Volterra communities, and (iii) random forcing can promote genetic diversity in the presence of exploitative interactions.Comment: 25 page

    A laser gyroscope system to detect the Gravito-Magnetic effect on Earth

    Full text link
    Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the regime required to measure the gravitomagnetic effect (Lense Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties. The relative angle can be controlled and provides a useful null measurement. A quadruple twin system could reach a 1% sensitivity after 3:2 years of data, provided each square ring has 6 m length on a side, the system is shot noise limited and there is no source for 1/f- noise.Comment: 9 pages, 6 figures. 2010 Honourable mention of the Gravity Research Foundation; to be published on J. Mod. Phys.

    Non-ergodic effects in the Coulomb glass: specific heat

    Full text link
    We present a numerical method for the investigation of non-ergodic effects in the Coulomb glass. For that, an almost complete set of low-energy many-particle states is obtained by a new algorithm. The dynamics of the sample is mapped to the graph formed by the relevant transitions between these states, that means by transitions with rates larger than the inverse of the duration of the measurement. The formation of isolated clusters in the graph indicates non-ergodicity. We analyze the connectivity of this graph in dependence on temperature, duration of measurement, degree of disorder, and dimensionality, studying how non-ergodicity is reflected in the specific heat.Comment: Submited Phys. Rev.
    • …
    corecore