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Abstract Understanding under what conditions interacting populations, whether
they be plants, animals, or viral particles, coexist is a question of theoretical and
practical importance in population biology. Both biotic interactions and environmental
fluctuations are key factors that can facilitate or disrupt coexistence. To better under-
stand this interplay between these deterministic and stochastic forces, we develop a
mathematical theory extending the nonlinear theory of permanence for deterministic
systems to stochastic difference and differential equations. Our condition for coex-
istence requires that there is a fixed set of weights associated with the interacting
populations and this weighted combination of populations’ invasion rates is positive
for any (ergodic) stationary distribution associated with a subcollection of popula-
tions. Here, an invasion rate corresponds to an average per-capita growth rate along a
stationary distribution. When this condition holds and there is sufficient noise in the
system, we show that the populations approach a unique positive stationary distribu-
tion. Moreover, we show that our coexistence criterion is robust to small perturbations
of the model functions. Using this theory, we illustrate that (i) environmental noise
enhances or inhibits coexistence in communities with rock-paper-scissor dynamics
depending on correlations between interspecific demographic rates, (ii) stochastic
variation in mortality rates has no effect on the coexistence criteria for discrete-time
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Lotka–Volterra communities, and (iii) random forcing can promote genetic diversity
in the presence of exploitative interactions.

One day is fine, the next is black.—The Clash

Mathematics Subject Classification (2000) 92D25 · 60J05 · 60H10

1 Introduction

The interplay between biotic interactions and environmental fluctuations plays a cru-
cial role in determining species richness and genetic diversity (Gillespie 1973; Chesson
and Warner 1981; Turelli 1981; Chesson 1994; Ellner and Sasaki 1996; Abrams et al.
1998; Bjornstad and Grenfell 2001; Kuang and Chesson 2008, 2009). For example,
competition for limited resources (Gause 1934) or sharing common predators (Holt
1977) may result in species or genotypes being displaced. However, random forcing of
these systems can reverse these trends and, thereby, enhance diversity (Gillespie and
Guess 1978; Chesson and Warner 1981; Abrams et al. 1998). Conversely, differential
predation can mediate coexistence between competitors (Paine 1966; Holt et al. 1994;
Chesson and Kuang 2008), yet environmental fluctuations can disrupt this coexistence
mechanism. A fruitful approach to study this interplay is developing stochastic differ-
ence or differential equations and analyzing the long-term behavior of the probability
distribution of the population sizes (Turelli 1981; Chesson 1982; Gard 1984; Chesson
and Ellner 1989; Ellner 1989; Gyllenberg et al. 1994a,b; Schreiber 2007; Benaïm et al.
2008).

An intuitive approach to the problem of coexistence is given by considering the aver-
age per-capita growth rate of a population when rare (Turelli 1978; Gard 1984; Chesson
and Ellner 1989). When this growth rate is positive, the population can increase and
“invade” the system. For pairwise interactions, one expects that coexistence is ensured
if each population can invade when it is rare and the other population is common.
Indeed, Gard (1984) and Chesson and Ellner (1989) have shown for predator–prey
interactions and competitive interactions that “mutual invasibility” ensures coexis-
tence in the sense of stochastic boundedness (Chesson 1978, 1982): the long-term
distribution of each population is bounded below by a positive random variable. Going
beyond pairwise interactions, this mutual invasibility criterion suggests that coexis-
tence should occur if a missing population can invade any subcommunity of the inter-
acting populations. Surprisingly, this criterion false even for deterministic systems.
May and Leonard (1975) showed with numerical simulations that competing species
exhibiting a rock-paper-scissor dynamic need not coexist despite every subcommunity
being invadable by a missing species.

Starting in the late 1970s, mathematicians developed a coexistence theory for deter-
ministic models that could handle rock-paper-scissor type dynamics (Schuster et al.
1979; Hofbauer 1981; Hutson 1984; Butler and Waltman 1986; Hofbauer and So 1989;
Hutson and Schmitt 1992; Jansen and Sigmund 1998; Schreiber 2000, 2006; Garay and
Hofbauer 2003; Hofbauer and Schreiber 2004). Their notion of coexistence, known as
permanence or uniform persistence, ensures that populations coexist despite frequent
small perturbations or rare large perturbations (Jansen and Sigmund 1998; Schreiber
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Persistence in fluctuating environments 657

2006). A sufficient condition for permanence is the existence of a fixed set of weights
associated with the interacting populations such that this weighted combination of
populations’ invasion rates is positive for any invariant measure associated with a
sub-collection of populations (Hofbauer 1981; Schreiber 2000; Garay and Hofbauer
2003). Conversely, if there is a convex combination of the invasion rates that is nega-
tive for all invariant measures associated with a sub-collection of populations, then the
community has one or more populations that is extinction prone (Garay and Hofbauer
2003; Hofbauer and Schreiber 2004).

While environmental stochasticity is often cited as a motivation for the concept
of permanence (Hutson and Schmitt 1992; Jansen and Sigmund 1998), only recently
has the effect of environmental stochasticity on permanent systems been investigated.
Benaïm et al. (2008) found if a deterministic continuous-time model satisfies the afore-
mentioned permanence criterion, then, under a suitable non-degeneracy assumption,
the corresponding stochastic differential equation with a small diffusion term has a
positive stationary distribution concentrated on the positive global attractor of the
deterministic system. Consequently, permanent systems persist despite continual, but
on average small, random perturbations. Conversely, if the deterministic dynamics
satisfies the impermanence criterion, then the stochastic dynamics almost surely con-
verges to the boundary of the state space. This asymptotic loss of one or more species
occurs even if there is a positive attractor for the underlying deterministic dynamics.

For many systems, stochastic perturbations may not be small and these perturba-
tions may not be best described by stochastic differential equations (Turelli 1978).
Here, in Sects. 2 and 3, we develop a natural generalization of the permanence criteria
for stochastic difference and differential equations with arbitrary levels of noise. The
proofs of these results are presented in the Appendices. In Sect. 4, we develop appli-
cations of these results to competitive lottery models, discrete-time Lotka–Volterra
models with environmental disturbances, and stochastic replicator equations. In par-
ticular, we show how environmental stochasticity can enhance or disrupt diversity in
these models.

2 Discrete time models

2.1 The models

We study the dynamics of k interacting populations in a random environment. Let
Xi

t denote the density of the i-th population at time t and Xt = (X1
t , . . . , Xk

t ) the
vector of population densities at time t .1 To account for environmental fluctuations,
we introduce a random variable ξt that represents the state of the environment (e.g.
temperature, nutrient availability) at time t . The fitness fi (Xt , ξt+1) of population i at
time t depends on the population state and environmental state at time t + 1. Under
these assumptions, we arrive at the following stochastic difference equation:

Xt+1 = f (Xt , ξt+1) ◦ Xt (1)

1 For sequences of random vectors, we use subscripts to denote time t and superscripts to denote components
of the vector. For all other vectors, we use subscripts to denote components of the vector.
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where f (x, ξ) = ( f1(x, ξ), . . . , fk(x, ξ)) is the vector of fitnesses and ◦ denotes the
Hadamard product i.e. component-wise multiplication.

Regarding (1), we make four assumptions:

A1: There exists a compact set S of Rk+ = {x ∈ Rk : xi ≥ 0} such that Xt ∈ S for
all t ≥ 0.

A2: {ξt }∞t=0 is a sequence of i.i.d random variables independent of X0 taking values
in a probability space E equipped with a σ -field and probability measure m.

A3: fi (x, ξ) are strictly positive functions, continuous in x and measurable in ξ.
A4: For all i, supx∈S

∫
(log fi (x, ξ))

2 m(dξ) < ∞
Assumption A1 ensures that the populations remain bounded for all time. Assumptions
A2 and A3 imply that {Xt }∞t=0 is a Markov chain on S and that {Xt }∞t=0 is Feller, mean-
ing that Ph, as defined below, is continuous whenever h is continuous. Assumption
A4 is a technical assumption meet by many models.

2.2 Some ergodic theory

In order to state our main results, we introduce some notation and review some basic
concepts from ergodic theory. For any Borel set A ⊂ S and x ∈ S, let

Px[Xt ∈ A] = P[Xt ∈ A
∣
∣X0 = x].

be the probability Xt is in A given that X0 = x. For various notions of convergence,
it is useful to consider how the expected value of an “observable” (a function h from
S → R) depends on the dynamics of Xt . Give a bounded or nonnegative measurable
function h : S �→ R, define

E[h(X1)|X0 = x] =
∫

h( f (x, ξ) ◦ x)m(dξ)

to be the expected value of h in the next time step given that the current state of the
population is x. Let P be the operator on bounded measurable functions defined by
Ph(x) = E[h(X1)|X0 = x].

To understand the long-term statistical behavior of the population dynamics, it is
useful to introduce invariant probability measures. Roughly, a probability measure μ
is invariant if the population initially follows the distribution of μ, then it follows this
distribution for all time i.e. if P[X0 ∈ A] = μ(A) for all Borel sets A ⊂ S, then
P[Xt ∈ A] = μ(A) for all t and all Borel sets A ⊂ S. One can phrase this invariance
in terms of observables h : S → R. If X0 follows the distribution of μ, then the
expected value of h(X0) equals

∫
S h(x)μ(dx) and the expected value of h(X1) equals∫

S Ph(x)μ(dx). It follows that a Borel probability measure μ is invariant for {Xt }∞t=0
or P if

∫

S

h(x)μ(dx) =
∫

S

Ph(x)μ(dx) (2)
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Persistence in fluctuating environments 659

for all continuous bounded functions h : S → R. We let P denote the space of Borel
probability measures on S.

If Xt initially follows the distribution of an invariant probability measures μ, then
Birkhoff’s ergodic theorem implies that the temporal averages of an observable along
a population trajectory converges with probability one. More precisely, if h : S → R
is a measurable function with

∫
S |h(x)|μ(dx) < ∞, then there exists a measurable

function h̃ : S → R such that
∫

S |̃h(x)|μ(dx) < ∞ and

lim
t→∞

1

t

t−1∑

s=0

h(Xs) = h̃(X0)

with probability one. When h̃ is a constant function for all bounded measurable h, μ
is called an ergodic probability measure in which case

lim
t→∞

1

t

t−1∑

s=0

h(Xs) =
∫

S

h(x)μ(dx) (3)

with probability one. Since
∫

S h(x)μ(dx) corresponds to the expected value of h(X0),
Eq. (3) can be interpreted as a law of large numbers for Xt .

While the Birkhoff ergodic theorem provides a relatively complete picture of the
long-term statistical behavior of Xt , it only does so when X0 is initially distributed
like an invariant probability measure. However, as we are interested in the long-term
behavior of Xt for any positive initial condition X0, new results are needed that require
the concept of an invasion rate.

2.3 Invasion rates

The expected per-capita growth rate at state x of population i is

λi (x) =
∫

log fi (x, ξ)m(dξ).

When λi (x) > 0, the i-th population tends to increase when the current population
state is x. When λi (x) < 0, the i-th population tends to decrease when the current
population state is x. For an invariant probability measure μ, we define the invasion
rate of species i with respect to μ to be

λi (μ) =
∫

S

λi (x)μ(dx)

The following proposition clarifies why λi (μ) is called an invasion rate. Its proof is
in Appendix A.
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Proposition 1 Let μ be an invariant probability measure and i ∈ {1, . . . , k}. Then
there exists a bounded map λ̂i : S → R such that:

(i) With probability one and for μ-almost every x ∈ S

lim
t→∞

1

t

t−1∑

s=0

log fi (Xs, ξs+1) = λ̂i (x) when X0 = x;

(ii)
∫

S λ̂i (x)μ(dx) = λi (μ); Furthermore if μ is ergodic, then λ̂i (x) = λi (μ)μ-
almost surely.

(iii) If μ({x ∈ S : xi > 0}) = 1, then λi (μ) = 0.

When μ is ergodic, λi (μ) is the long-term time average of the per-capita growth
rate of population i . Moreover, since each of the set {xi = 0} is invariant under the
dynamics in (1), there exists a set supp(μ) ⊂ {1, . . . , k} such that xi > 0 if and only
if i ∈ supp(μ) for μ-almost all x. One can interpret supp(μ) as the set of populations
supported by μ. Quite intuitively, Proposition 1 implies that the long-term average of
the per-capita growth is zero for all populations supported by μ i.e. λi (μ) = 0 for all
i ∈ supp(μ).

2.4 Persistence

To quantify persistence, there are two ways to think about the asymptotic behavior
of {Xt }∞t=0. First, one can ask what is the distribution of Xt far into the future. For
example, what is the probability that the population density of each state is greater
than ε in the long term i.e. P[Xt ≥ (ε, . . . , ε)] for large t? The answer to this question
provides information what happens across many independent realizations of the pop-
ulation dynamics. Alternatively, one might be interested about the statistics associated
with a single realization of the process i.e. a single time series. For instance, one could
ask what fraction of the time was the density of each population state greater than ε?
To answer this question, it is useful to introduce the occupation measures

�t = 1

t

t∑

s=1

δXs

where δXs denotes a Dirac measure at Xs i.e. δXs (A) = 1 if Xs ∈ A and 0 otherwise
for any (Borel) set A ⊂ S. One can interpret �t (A) as the proportion of time the
population spends in A up to time t .

Our first theorem addresses persistence from the second perspective. To state this
theorem, for η > 0, let Sη = {x ∈ S : xi ≤ η for some i} be the set of the states where
at least one population has an abundance less than or equal to η.S0 corresponds to the
states where one or more populations is extinct.
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Theorem 1 (Persistence) Assume that one of the following equivalent conditions hold:

(i) For all invariant probability measures μ supported on S0,

λ∗(μ) := max
i
λi (μ) > 0

(ii) There exists p ∈ 	 such that

∑

i

piλi (μ) > 0

for all ergodic probability measures μ supported by S0.

Then for all ε > 0 there exists η > 0 such that

lim sup
t→∞

�t (Sη) ≤ ε almost surely

whenever X0 = x ∈ S\S0.

Theorem 1 implies that fraction of time spent by the populations in Sη goes to zero as
η goes to zero. Theorem 1, however, does not ensure that there is a unique positive sta-
tionary distribution. For this stronger conclusion, there has to be sufficient noise in the
system to ensure after enough time any positive population state can move close to any
other positive population state. More precisely, given η > 0, we say that {Xt } is irre-
ducible over S\Sη if there exists a probability measure
 on S\Sη such that for all x ∈
S\Sη and every Borel set A ⊂ S\Sη there exists n ≥ 1 (depending onx and A) such that

Px(Xn ∈ A) > 0

whenever 
(A) > 0.

Theorem 2 (Uniqueness) Assume that {Xt } is irreducible over S\Sη for allη > 0, and
that the assumption of Theorem 1 holds. Then there exists a unique invariant probabil-
ity measure π such that π(S0) = 0 and the occupation measures�t converge almost
surely to π as t → ∞, whenever X0 = x ∈ S\S0.

Theorem 2 ensures the asymptotic distribution of one realization of the population
dynamics is given by the positive stationary distribution π . Hence, π provides infor-
mation about the long-term frequencies that a population trajectory spends in any part
of the population state space. To gain information about the distribution of Xt across
many realizations of the population dynamics, we need a stronger irreducibility con-
dition. This stronger condition requires that after a fixed amount of time independent
of initial condition, any positive population state can move close to any other positive
population state. More precisely, we say that {Xt } is strongly irreducible over S\Sη
if there exists a probability measure 
 on S\Sη, an integer n ≥ 1 and some number
0 < h ≤ 1 such that for all x ∈ S\Sη and every Borel set A ⊂ S\Sη

Px(Xn ∈ A) ≥ h
(A).
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To state the next result given μ, ν ∈ P define

‖μ− ν‖ = sup
B

|μ(B)− ν(B)|

where the supremum is taken over all Borel sets B ⊂ S\S0.

Theorem 3 (Convergence in distribution) In addition to the assumptions of Theo-
rem 2 assume that {Xt } is strongly irreducible over S\Sη for all η > 0. Then the
distribution of Xt converges to π as t → ∞ whenever X0 = x ∈ S\S0; that is

lim
t→∞ ‖Px[Xt ∈ ·] − π‖ = 0 for all x ∈ S\S0.

Remark 1 Suppose that there exists a nonzero continuous functionρ : S\S0×S\S0 �→
R+ an integer n ≥ 1 and a probability ν over S\S0 such that for all x ∈ S\S0 and
Borel set A ⊂ S\S0

Px[Xn ∈ A] ≥
∫

A

ρ(x, y)ν(dy).

Then {Xt } is strongly irreducible over S\Sη for all η > 0.

2.5 Robust persistence

Under an additional assumption, our main condition ensuring persistence is robust to
small variations of the model. The importance of this robustness stems from the fact
that all models are approximations to reality. Consequently, if nearby models (e.g.
more realistic models) are not persistent despite the focal model being persistent, then
one can draw few (if any!) conclusions about the persistence of the modeled biological
system. To state our result about robustness, let g(x, ξ) = g1(x, ξ), . . . , gk(x, ξ) be
fitness functions. The model

Xt+1 = g(Xt , ξt+1) ◦ Xt (4)

is called a δ-perturbation of (1) provided g satisfies conditions A3–A4 and

sup
x∈S

E[‖ f (x, ξ)− g(x, ξ)‖] = sup
x∈S

∫
‖ f (x, ξ)− g(x, ξ)‖m(dξ) ≤ δ.

Proposition 2 Assume the dynamics (1) satisfies hypothesis (i) of Theorem 1 and there
exist constants 0 < α ≤ β < ∞ such that α ≤ fi (x, ξ) ≤ β for all i,x, ξ . Then there
exists δ > 0 such that every δ−perturbation of (1) satisfies hypothesis (i).
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3 Continuous time models

For stochastic differential equation models, we assume, for presentational clarity, that
S = 	 = {x ∈ Rk+ : ∑i xi = 1}. However, our results hold more generally for a
compact region that is forward invariant for the stochastic dynamics. The population
dynamics on	 consists of a “drift” term that describes the dynamics in the absence of
noise and a “diffusion” term that describes the effects of environmental stochasticity
on the population dynamics. The drift term for population i is given by Xi

t Fi (Xt )

where Fi is its per-capita growth rate. To allow for correlations of environmental fluc-
tuations across populations, we assume the environmental noise is generated by an
m-dimensional standard Brownian motion (B1

t , . . . , Bm
t ) and per-capita effect of B j

t

on the growth of population j is given by� j
i (Xt ). Under these assumptions, we arrive

stochastic differential equations of the form

d Xi
t = Xi

t [Fi (Xt )dt +
m∑

j=1

�
j
i (Xt )d B j

t ], i = 1, . . . , k. (5)

To ensure existence and uniqueness of solutions of (5), we assume that Fi and� j
i are

real valued Lipschitz continuous maps on 	. To ensure that the population dynamics
remain on 	 (i.e. 	 is invariant), we assume that for each x ∈ 	, the drift vector
x ◦ F(x) and the diffusion terms

S j (x) = x ◦� j (x), j = 1, . . . ,m, (6)

are elements of the tangent space T	 = {u ∈ Rk : ∑k
j=1 u j = 0} of 	.

The stochastic differential equation (5) defines a continuous time Markov process
{Xt }t≥0 on 	. We let {Pt }t≥0 denote the associated semigroup defined by

Pt h(x) = E[h(Xt )|X0 = x]

for every bounded or nonnegative measurable function h : 	 → R.Pt h(x) is the
expected value of h at time t given that initial population state is x. A probability μ
on 	 is called invariant (respectively ergodic) provided it is invariant (respectively
ergodic) for Pt for all t > 0. The occupation measure of {Xt }t≥0 is the measure

�t = 1

t

t∫

0

δXs ds.

�t (A) corresponds to the fraction of time spent in the set A ⊂ 	 by time t .
The analog of the per-capita growth rate for these continuous time processes is

given by

λi (x) = Fi (x)− 1

2
aii (x) (7)
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664 S. J. Schreiber et al.

where

ai j (x) =
m∑

k=1

�k
i (x)�

k
j (x).

When λi (x) > 0, the population tends to increase. When λi (x) < 0, the population
tends to decrease. Like in the discrete-time case, define

λi (μ) =
∫
λi (x)μ(dx) (8)

and

λ∗(μ) = max
i
λi (μ). (9)

In Appendix B, we prove the following continuous-time analog of Theorem 1

Theorem 4 Assume that one of the equivalent conditions (i) and (i i) of Theorem 1
hold where λi (μ) and λ∗(μ) are given by formulaes (7), (8) and (9). Then the conclu-
sion of Theorem 1 hold for the occupation measure of the process {Xt }t≥0 solution to
(5).

To ensure the existence of a unique stationary distribution and convergence toward
this distribution, we need an appropriate irreducibility condition that ensures the noise
can locally push the dynamics in all directions. More precisely, we call the system (5)
nondegenerate if the column vectors S1(x), . . . , Sm(x) span T	 for all x ∈ 	\	0.

Theorem 5 Assume that (5) is non-degenerate and the assumption of Theorem 4
holds. Then there exists a unique invariant probability π such that π(	0) = 0. Fur-
thermore,

(i) The distribution of Xt converges to π as t → ∞ whenever X0 = x ∈ 	\	0;
that is

lim
t→∞ ‖Px[Xt ∈ ·] − π‖ = 0 for all x ∈ 	\	0,

(ii) The occupation measures �t = 1
t

∫ t
0 δXs ds converge almost surely to π , when-

ever X0 = x ∈ 	\	0.

3.1 Robust persistence

Let F̃ and �̃ be real valued Lipschitz continuous maps on 	 with the property that
for each x ∈ 	, the drift vector x ◦ F̃(x) and the diffusion terms S̃ j (x) = x ◦ �̃ j (x),
are elements of T	. The stochastic differential equation

d Xi
t = Xi

t [F̃i (Xt )dt +
m∑

j=1

�̃
j
i (Xt )d B j

t ], i = 1, . . . , k; (10)
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is called a δ-perturbation of (5) if

sup
x∈	

‖F(x)− F̃(x)‖ + ‖�(x)− �̃(x)‖ ≤ δ.

Proposition 3 Assume that the dynamics (5) satisfies hypothesis (i) of Theorem 1.
Then there exists δ > 0 such that every δ-perturbation of (5) satisfies hypothesis (i).

In the case �(x) = 0, Proposition 3 combined with Theorem 4 or 5 implies that
every sufficiently small random perturbation of the deterministic system

dx

dt
= x ◦ F(x) (11)

is persistent, provided that

sup
μ

∫
Fi (x)μ(dx) > 0

where the supremum is taken over the invariant probabilities of (11) supported by	0.

This fact was also proved in Benaïm et al. (2008, Theorem 3.1) using other techniques.
Hence, Theorems 4, 5 and Proposition 3 extend Benaïm et al. (2008, Theorem 3.1)
beyond small perturbation of deterministic dynamics. We remark, however, the result
obtained in Benaïm et al. (2008) provides an exponential rate of convergence toward
π. It would be nice to see whether of not such a rate can be obtained under the more
general assumptions of Theorem 5.

4 Applications

4.1 Lottery models and the storage effect

The lottery model of Chesson and Warner (1981) represents species that require a
territory or “home” (an area held to the exclusion of others) in order to reproduce.
Moreover, the model assumes that space is always in short supply and, consequently,
all patches are occupied. Let Xi

t denote the fraction of space occupied by species i
at time t . The fraction of adults of species i dying in a time step is mi . The spaces
emptied by dying individuals are immediately filled by progeny which are produced at
a rate bi (Xt , ξt+1)Xi

t by species i . Here ξt is a sequence of i.i.d. random variables that
represents environmental stochasticity. If all progeny are equally likely to fill empty
spaces, then the probability an empty space is filled by species i equals

bi (Xt , ξt+1)Xi
t

∑k
j=1 b j (Xt , ξt+1)X

j
t

.
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666 S. J. Schreiber et al.

Under these assumptions, the dynamics of the competing species are given by

Xi
t+1 = (1 − mi )X

i
t +

∑

j

m j X j
t

bi (Xt , ξt+1)Xi
t

∑
j b j (Xt , ξt+1)X

j
t

i = 1, . . . , k (12)

on the state space 	. For many choices of bi and ξt , (12) satisfies the irreducibility
assumptions of Theorems 2 and 3. For instance, the irreducibility assumptions are
satisfied if bi (Xt , ξt+1) = ξ i

t+1 are log-normally distributed or gamma distributed.
When there are two species, Chesson (1982) analyzed this model when bi (Xt , ξt )

do not depend on Xt . We show how our results recover Chesson’s persistence criteria.
The set of ergodic invariant measures on 	0 are the Dirac measures, δ(0,1) and δ(1,0),
supported on the points (0, 1) and (1, 0), respectively. At these ergodic measures, the
invasion rates are given by

μ λ1(μ) λ2(μ)

δ(1,0) 0 E

[
log

(
1 − m2 + m2

b2((1,0),ξ)
b1((1,0),ξ)

)]

δ(0,1) E

[
log

(
1 − m1 + m1

b1((0,1),ξ)
b2((0,1),ξ)

)]
0

Theorem 1 ensures persistence if

E

[

log

(

1−m1+m1
b1((0, 1), ξ)

b2((0, 1), ξ)

)]

>0 and E

[

log

(

1−m2+m2
b2((1, 0), ξ)

b1((1, 0), ξ)

)]

>0

(13)

Hence, we have recovered the “mutual invasibility” condition for persistence of Ches-
son without making any monotonicity assumptions about the functions bi (x, ξ) (see
also Ellner (1984)).

When the per-capita reproductive rates are frequency-independent i.e. bi (x, ξt+1) =
ξ i

t+1 and ξt = (ξ1
t , ξ

2
t ), the persistence condition (13) can be used to illustrate what

Chesson and Warner (1981) call the “storage-effect.” In the absence of environmental
stochasticity, Chesson (1982) has shown that coexistence is not possible. If there is
environmental stochasticity and all individuals die between generations i.e. mi = 1
for all i , then (13) simplifies to

E[log ξ1] > E[log ξ2] and E[log ξ2] > E[log ξ1]

Both of these conditions can not be meet in which case Chesson (1982, Thm. 3.5) has
shown that one of the species goes extinct with probability one. Hence, when indi-
viduals are short lived, coexistence does not occur. On the other hand, if individuals
are long-lived i.e. mi ≈ 0 for all i , then the approximation log(1 + x) = x + O(x2)

applied to (13) yields the persistence criterion

E

[
ξ1

ξ2

]

> 1 and E

[
ξ2

ξ1

]

> 1.
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This condition is meet when the species exhibit some temporal partitioning: the repro-
ductive rates ξ1

t and ξ2
t are not overly correlated. Intuitively, long-lived individuals,

unlike short-lived individuals, can “store” their numbers over periods of poor condi-
tions and, thereby, take advantage of future good conditions. This ability to store for
the future in conjunction with temporal partitioning mediates coexistence.

For lottery models with three or more species, persistence criteria can be more
subtle as they may require determining the invasion rates at non-trivial ergodic mea-
sures. However, an interesting exception occurs with a rock-paper-scissor version of
the lottery model i.e. species B displaces species A,C displaces B, and A displaces
C . To model this intransitive interaction, we assume that the per-capita reproductive
rates are linear functions of the species frequencies

bi (Xt , ξt+1) =
∑

j

ξ
i j
t+1 X j

t

where

ξt =
⎛

⎝
βt αt γt

γt βt αt

αt γt βt

⎞

⎠

where αt > βt > γt > 0 for all t . For simplicity, we assume that mi = m for all i .
For any pair of strategies, say 1 and 2, the dominant strategy, 1 is this case, displaces

the subordinate strategy. Indeed, assume X3
0 = 0. If yt = X2

t /X1
t and zt = ∑

i ξ
i
t+1 Xi

t ,
then

yt+1 = (1 − m)zt + m(γt+1 X1
t + βt+1 X2

t )

(1 − m)zt + m(βt+1 X1
t + αt+1 X2

t )
yt < yt

is a decreasing sequence that converges to 0. Hence, the only ergodic measures on	0
are Dirac measures δx supported on x = (1, 0, 0), (0, 1, 0), (0, 0, 1). At these ergodic
measures, the invasion rates are given by

μ λ1(μ) λ2(μ) λ3(μ)

δ(1,0,0) 0 E
[
log (1−m+m αt/βt )

]
E
[
log (1−m+m γt/βt )

]

δ(0,1,0) E
[
log (1−m+m γt/βt )

]
0 E

[
log (1−m+m αt/βt )

]

δ(0,0,1) E
[
log (1−m+m αt/βt )

]
E
[
log (1−m+m γt/βt )

]
0

A straightforward algebraic competition reveals that the conditions for persistence are
satisfied if and only if

I (m) := E
[
log (1 − m + mαt/βt )

] + E
[
log (1 − m + mγt/βt )

]
> 0 (14)

We conjecture that if the opposite inequality holds, then persistence does not occur.
To see the role of the storage effect for these rock-paper-scissor communities, we

can examine how the sign of I (m) depends on m. Since I (0) = 0 and I ′′(m) < 0 for
0 ≤ m ≤ 1, I (m) > 0 for a non-empty interval of m values if and only if
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I ′(0) = E

[
αt

βt
+ γt

βt

]

− 2 > 0 (15)

Moreover, if

I (1) = E

[

log
αt

βt
+ log

γt

βt

]

> 0 (16)

then the community persists for all 0 < m ≤ 1. However, if (15) holds but (16) does
not, then the community persists for 0 < m < m∗ for some m∗ < 1. Hence, as in the
two species example of Chesson and Warner, competitive communities with intransi-
tives are more likely to coexist if individuals have longer generation times. However,
unlike the example of Chesson and Warner, environmental noise can disrupt as well
as enhance coexistence (see discussion in Sect. 5).

4.2 Discrete Lotka–Volterra dynamics with disturbances

Consider k interacting species whose dynamics in the absence of environmental dis-
turbances is given by

Xt+1 = Xt ◦ exp(AXt + b)

where the matrix A describes pairwise interactions between species and b describes the
intrinsic rates of growth of each species. These dynamics of this system were studied
by Hofbauer et al. (1987). To account for stochastic disturbances of these dynam-
ics, we assume that the fraction of individuals of species i surviving environmental
disturbances is ξ i

t ∈ (0, 1] at time t . Then the dynamics become

Xt+1 = Xt ◦ exp(AXt + b) ◦ ξt+1 (17)

An algebraic characterization of boundedness in terms of the matrices A and b
remains an open problem even without the stochasticity. Hofbauer et al. (1987) defined
the interaction matrix A to be hierarchically ordered if there exists a reordering of the
indices such that Aii < 0 for all i and Ai j ≤ 0 whenever i ≤ j . While this assumption
excludes all types of mutualistic interactions, it allows for any type of predator–prey or
competitive interaction. The following lemma extends work of Hofbauer et al. (1987)
by showing that hierarchically ordered systems remain bounded in the presence of
environmental disturbances. For these systems, the irreducibility conditions of Theo-
rems 2 and 3 are meet whenever ξt has a positive, continuous density on the interval
(0, 1).

Lemma 1 If (17) is hierarchically ordered, then there exists K > 0 such that Xt ∈
[0, K ]k for t ≥ k + 1.

Proof Following Hofbauer et al. (1987) observe that

X1
t+1 ≤ X1

t exp(A11 X1
t + b1)
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for all t as A1 j ≤ 0 for all j ≥ 2 and ξ1
t ≤ 1. Hence, X1

t+1 is bounded above by
K1 = − exp(b1 − 1)/A11, and X1

t ∈ [0, K1] for t ≥ 2.
Assume that there exist Ki such that Xi

t ∈ [0, Ki ] for i ≤ j − 1 and t ≥ i + 1. We

will show that there exists K j such that X j
t ∈ [0, K j ] for t ≥ j + 1. Indeed, by the

hierarchically ordered assumption and our inductive assumption,

X j
t+1 ≤ X j

t exp

⎛

⎝A j j X j
t + b j +

∑

i< j

|A ji |K j

⎞

⎠

for t ≥ j . Hence, X j
t ≤ K j for t ≥ j + 1 where K j = − exp(b j + ∑

i< j |A ji |K j −
1)/A j j . Defining K = max K j completes the proof. ��

The following lemma shows that verifying persistence can reduce to a linear algebra
problem. In particular, this lemma implies that all the permanence criteria developed by
Hofbauer et al. (1987) for hierarchal systems extends to these stochastically perturbed
Lotka–Volterra systems.

Lemma 2 Let μ be an ergodic measure for (17) and I ⊂ {1, . . . , k} be such that
μ({x ∈ S : xi > 0 iff i ∈ I } = 1. Define βi = bi + E[log ξ i

t ]. If there exists a unique
solution x̂ to

∑

j

Ai j x̂ j + βi = 0 for i ∈ I and x̂i = 0 for i /∈ I

then

λi (μ) =
{

0 if i ∈ I∑
j Ai j x̂ j + βi otherwise.

Proof Let μ and I be as assumed in the statement of the lemma. Assertion (i i i) of
Proposition 1 implies that

0 = λi (μ) =
∑

j

Ai j

∫
x jμ(dx)+ βi

for all i ∈ I . Since we have assumed there is a unique solution to this system of linear
equations, it follows that

∫
xiμ(dx) = x̂i for all i and the lemma follows. ��

4.3 Stochastic replicator dynamics

A particular case of the continuous time equations (5) is given by the stochastic rep-
licator dynamics introduced by Fudenberg and Harris (1992). Assume that the fitness
of population i is described by a function fi : 	 �→ R of the state variable x and that
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the per capita growth rate of the number of individuals in population i is stochastic,
given by sum of the fitness of strategy i and a standard Brownian motion Bi (t):

dY i
t = Y i

t

(
fi (Xt )+ σi d Bi

t

)
, (18)

where Xi
t = Y i

t /
∑

j Y j
t and σi > 0. Then the law of motion for the state Xt can be

obtained via a straightforward application of Ito’s formula and takes the form (5) with

Fi (x) = fi (x)− σ 2
i xi −

∑

j

x j ( f j (x)− σ 2
j x j )

and

�
j
i (x) = (δi j − x j )σ j .

If there are only two types (i.e. k = 2), then the only ergodic measures on	0 are the
Dirac measures at x = (1, 0) and x = (0, 1), respectively. At these Dirac measures,
the invasion rates are given by

μ λ1(μ) λ2(μ)

δ(1,0) 0 f2(1, 0)− f1(1, 0)− 1
2 (σ

2
2 − σ 2

1 )

δ(0,1) f1(0, 1)− f2(0, 1)− 1
2 (σ

2
1 − σ 2

2 ) 0

Hence, both strategies persist if

f1(0, 1)− σ 2
1

2
> f2(0, 1)− σ 2

2

2

and

f2(1, 0)− σ 2
2

2
> f1(1, 0)− σ 2

1

2

When these inequalities are satisfied, one can solve explicitly for the density of the
positive stationary distribution of X1 = x on [0, 1] (see, e.g., Kimura 1964)

ρ(x) = C

V (x)
exp

(

2
∫

F1(x, 1 − x, 0)

V (x)
dx

)

where V (x) = x2(1 − x)2(σ 2
1 + σ 2

2 ) and C is a normalization constant. For example,
if fi are linear functions, then this stationary distribution is given by a beta distribution
as we illustrate in the next example.

Since we can solve for non-trivial ergodic measures for two interacting types,
we can derive explicit conditions for persistence of three interacting types. As an
illustration, consider three interacting types with per-capita growth rates f1(x) =
r1 + b x3, f2(x) = r2, and f3(x) = r3 − c x1. Here, interactions between types 1 and
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3 provide a benefit b > 0 to type 1 and a cost c > 0 to type 3. To allow for coexistence,
we assume the following tradeoff r3 − σ 2

3 /2 > r2 − σ 2
2 /2 > r1 − σ 2

1 /2.
Our analysis begins with pair-wise interactions. When type 1 is not present i.e.

Y 1
0 = 0, the remaining types i = 2, 3 exhibit geometric Brownian motions of the form

Y i
t = Y i

0 exp
(
(ri − σ 2

i /2)t + σi Bi
t

)
where Bi

t are independent Brownian motions.
Since r3 − σ 2

3 /2 > r2 − σ 2
2 /2, Xt converges almost surely to (0, 0, 1) whenever

Y 1
0 = 0 and Y 3

0 > 0. Similarly, when type 3 isn’t present i.e. Y 3
0 = 0, the remaining

types i = 1, 2 exhibit geometric Brownian motions and Xt converges almost surely
to (0, 1, 0) whenever Y 2

0 > 0. To determine the outcome of the pairwise interaction
between genotypes 1 and 3, we need the invasion rates

λ1(0, 0, 1)=r1+b−σ 2
1 /2−r3+σ 2

3 /2 and λ3(1, 0, 0)=r3 − c − σ 2
3 /2 − r1+σ 2

1 /2

Both of these invasion rates are positive provided that

b > r3 − σ 2
3 /2 − r1 + σ 2

1 /2 > c (19)

When (19) holds, there is a unique invariant measureμ on {x ∈ 	 : x1x3 > 0,x2 = 0}
whose density ρ(x1) := ρ(x1, 1 − x1) is given by

ρ(x1)= C

x2
1(1−x2

1)(σ
2
1 +σ 2

2 )
exp

(

2
∫

r1+b(1−x1)−r3+cx1+σ 2
2 (1−x1)−σ 2

1 x1

x2
1(1−x2

1)(σ
2
1 +σ 2

2 )
dx

)

which upon integration yields

ρ(x1) = xα−1
1 x

β−1
3

B(α, β)
(20)

where B(α, β) is a normalization constant and

α = 2(σ 2
3 − r3 + r1 + b)

σ 2
1 + σ 2

3

− 1 β = 2(σ 2
1 + r3 − r1 − c)

σ 2
1 + σ 2

3

− 1.

Fudenberg and Harris (1992, Proposition 1) provide a detailed derivation of this sta-
tionary distribution for linear f1 and f3.

To understand the fate of the three interacting genotypes, there are (generically)
three cases to consider. First, assume that (19) is satisfied. The invasion rate for type
2 at the invariant measure μ, see (20), is given by

λ2(μ) = bσ 2
3 − (b − c)σ 2

2 − cσ 2
1 − 2br3 + 2(b − c)r2 + 2cr1 + 2bc

2(b − c)
(21)

Whenever λ2(μ) > 0, Theorem 4 ensures there is a unique positive stationary distri-
bution on 	 by choosing p3 � p2 � p1 > 0. Since (19) implies b − c > 0, (21)
implies that stochastic fluctuations in genotype 3’s per-capita growth rate can mediate
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coexistence, while stochastic fluctuations in the per-capita growth rates of the other
two genotypes can disrupt coexistence.

Next, assume that (19) doesn’t hold. If b < r3 − σ 2
3 /2 − r2 + σ 2

2 /2, then the inva-
sion rates λ1(0, 0, 1) and λ2(0, 0, 1) are both negative and we conjecture coexistence
doesn’t occur. Alternatively if b, c > r3 − σ 2

3 /2 − r2 + σ 2
2 /2, then the boundary

dynamics exhibit a rock-paper-scissor dynamic and the only ergodic invariant mea-
sures are the Dirac measures at the vertices. At these ergodic measures, the invasion
rates are given by

μ λ1(μ) λ2(μ) λ3(μ)

δ(1,0,0) 0 r2−σ 2
2 /2−r1+σ 2

1 /2 r3−c−σ 2
3 /2−r2+σ 2

2 /2

δ(0,1,0) r1−σ 2
1 /2−r2+σ 2

2 /2 0 r3−σ 2
3 /2−r2+σ 2

2 /2

δ(0,0,1) r1+b−σ 2
1 /2−r3+σ 2

3 /2 r2−σ 2
2 /2−r3+σ 2

3 /2 0

A standard computation yields that the persistence criterion is satisfied when product
of the positive invasion rates is greater than the product of the absolute value of the
negative invasion rates. This occurs when b > c. Hence, for this rock-paper-scissor
dynamic, environmental stochasticity has no effect on coexistence.

5 Discussion

Understanding under what conditions interacting populations, whether they be plants,
animals, or viral particles, coexist is a question of theoretical and practical impor-
tance in population biology. Both biotic interactions and environmental fluctuations
are key factors that facilitate or disrupt coexistence. To better understand this interplay
between these deterministic and stochastic forces, we develop a mathematical theory
extending the nonlinear theory of permanence for deterministic systems to randomly
forced nonlinear systems. This theory provides a biologically interpretable criterion
for coexistence in the sense of stochastic boundedness (Chesson 1978, 1982). Using
this theory, we illustrate that environmental noise enhances or inhibits coexistence in
communities with rock-paper-scissor dynamics, has no effect on coexistence in certain
Lotka–Volterra communities, and can promote or inhibit genetic diversity.

Our condition for coexistence requires that there is a fixed set of weights associ-
ated with the interacting populations and this weighted combination of populations’
invasion rates is positive for any (ergodic) stationary distribution associated with a sub-
collection of populations. This criterion is the stochastic analog of a permanence crite-
rion for deterministic systems (Hofbauer 1981; Schreiber 2000; Garay and Hofbauer
2003). Since these invasion rates, defined as the average per-capita growth rates on
the stationary distribution, equal zero for populations supported by the stationary dis-
tribution, this criterion requires that a missing population has a positive invasion rate.
Hence, for pair-wise interactions, this criterion reduces to the “mutual invasibility”
criterion. When this condition holds and there is sufficient noise in the system (i.e.
irreducible), we have shown the populations approach a unique positive stationary
distribution whenever all types are initially present. Hence, the probability that the
abundance of any population falls below a critical threshold is arbitrarily small for
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sufficiently small thresholds. Moreover, the fraction of time any population spends
below this threshold is arbitrarily small for sufficiently small thresholds.

The need for this generalization of the mutual invasibility criterion is illustrated in
the deterministic literature by models of communities exhibiting rock-paper-scissor
type dynamics (Hofbauer and Sigmund 1998). Here, we extended this analysis to sto-
chastic counterparts of these models. If we assume that dominant strategies (e.g. rock)
in these models gain a benefit bt when playing subordinate strategies (e.g. scissor)
and subordinate strategies pay a cost ct when playing dominant strategies, then our
coexistence condition (15) for long-lived individuals becomes

E

[
bt

βt

]

> E

[
ct

βt

]

(22)

where βt is the “base” payoff. The effect of stochasticity in bt , ct , and βt on whether
this criterion holds depends on the correlations between the various payoffs. Nega-
tive correlations between base payoffs and benefits (i.e. getting large benefits when
base payoffs are small) makes (22) more likely to hold, while negative correlations
between base payoffs and costs make it less likely to hold. Hence, stochasticity can
facilitate coexistence when there are negative correlations between benefits and base-
payoffs, but inhibit coexistence when there are positive correlations between benefits
and base-payoffs.

For three competing genotypes in which the genotypes with the highest per-capita
growth rate is exploited by the genotype with the lowest per-capita growth rate, we have
shown that the effect of environmental fluctuations on coexistence is subtle. When the
three genotypes exhibit a rock-paper-scissor dynamic, stochastic fluctuations have no
effect on the coexistence criterion; coexistence requires that the benefit to the exploiter
exceed the cost paid by the exploited. When there is no rock-paper-scissor dynamic,
fluctuations in the per-capita growth rate of the exploited genotype can enhance diver-
sity, while fluctuations in the other two genotypes can disrupt coexistence. Since this
noise-induced coexistence occurs in populations with overlapping generations (i.e.
a stochastic differential equation model), these results partially support Ellner and
Sasaki (1996)’s assertion that “fluctuating selection can readily maintain genetic var-
iance in species where generations overlap in such a way that only a fraction of the
population is exposed to selection.”

We also have shown that stochastic variation in mortality or disturbance rates have
no effect the coexistence criteria for discrete-time Lotka Volterra models developed by
Hofbauer et al. (1987). This surprising outcome stems from the fact that the per-capita
growth rates in these models are linear functions in the population abundances. Adding
non-linearities (e.g. predator saturation) to the per-capita growth rates will alter this
conclusion, but the nature of this alteration remains to be understood.

Numerous mathematical challenges remain at this interface of random forcing and
biotic interactions. For example, do the same criteria hold when there are temporal
correlations in the environmental variables? We suspect the answer is yes. Alterna-
tively, we conjecture that inverting the coexistence criterion (i.e. a convex combi-
nation of invasion is negative for all stationary distributions supporting subsets of
species) implies an asymptotic approach to extinction with probability one. While this
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conjecture has been proven for stochastic differential equations with small diffusion
terms (Benaïm et al. 2008), it needs to be shown for stochastic difference equations or
stochastic differential equations with large diffusion terms. Finally, only recently have
invasion-based permanence criteria been developed for deterministic models of struc-
tured interacting populations (Hofbauer and Schreiber 2010). These structured models
can account for heterogeneity amongst individuals in terms of the location, size, and
age. Developing a mathematical framework to deal with these heterogeneities is an
exciting challenge that would help us understand how interactions between individual
heterogeneity, temporal heterogeneity, and biotic interactions determine diversity.
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Appendix A: Proofs for discrete time models

A.1 Proof of Proposition 1

Lemma 3 Letg : S×E �→ R be a measurable map such that supx∈C

∫
g(x, ξ)2m(dξ)

< ∞. Define ḡ(x) = ∫
g(x, ξ)m(dξ). Then

(i) For all x ∈ S and X0 = x

lim
t→∞

∑t−1
s=0 g(Xs, ξs+1)− ∑t−1

s=0 ḡ(Xs)

t
= 0.

with probability one.
(ii) Let μ be an invariant (respectively ergodic) probability measure for (Xt ), then

there exists a bounded measurable map ĝ such that with probability one and for
μ-almost every x

lim
t→∞

∑t−1
s=0 g(Xs, ξs+1)

t
= lim

t→∞

∑t−1
s=0 ḡ(Xs)

t
= ĝ(x) when X0 = x.

Furthermore
∫

ḡ(x)μ(dx) =
∫

ĝ(x)μ(dx)

(respectively ĝ(x) =
∫

ḡ(x)μ(dx) μ-almost surely).

Proof The first assertion follows from the strong law of large number for martingales,
since g(Xs, ξs+1) − Pg(Xs) is a square integrable martingale difference. The sec-
ond assertion follows from Birkhoff’s ergodic theorem applied to stationary Markov
Chains (see Meyn and Tweedie 1993, Theorem 17.1.2). ��
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The first two assertions of Proposition 1 follow directly from the preceding lemma
applied to g(x, ξ) = log fi (x, ξ). For the third assertion, notice that, by assertion (i)
of Proposition 1

lim
t→∞

log Xi
t

t
= λ̂i (x)

for μ-almost all x ∈ S\S0. Let Si,η = {x ∈ S : xi ≥ η} and η∗ > 0 be such
that μ(Si,η) > 0 for all η ≤ η∗. By Poincaré Recurrence Theorem, for μ almost all
x ∈ Si,η

Px[Xt ∈ Si,η infinitly often] = 1

for η ≤ η∗. Thus λ̂i (x) = 0 for μ-almost all x ∈ Si,η with η ≤ η∗. Hence λ̂i (x) = 0
for μ-almost all x ∈ ⋃

n∈N Si,1/n = {x ∈ S : xi > 0}. This proves assertion (iii).

A.2 Proof of Theorem 1

The proof of the first assertion of the theorem follows from the following lemma.

Lemma 4 The following two conditions are equivalent:

(i) For all invariant probability measures μ supported on S0,

λ∗(μ) := max
i
λi (μ) > 0

(ii) There exists p ∈ 	 such that

∑

i

piλi (μ) > 0

for all ergodic probability measures μ supported by S0.

Proof To see the equivalence of the conditions we need the following version of the
minimax theorem (see, e.g., Simmons 1998):

Theorem 6 (Minimax theorem) Let A, B be Hausdorff topological vector spaces
and let � : A × B → R be a continuous bilinear function. Finally, let E and F be
nonempty, convex, compact subsets of A and B, respectively. Then

min
a∈E

max
b∈F

�(a, b) = max
b∈F

min
a∈E

�(a, b)

We have that

min
μ

max
i
λi (μ) = min

μ
max
p∈	

∑

i

piλi (μ)
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where the minimum is taken over invariant probability measures μwith support in S0.
Define A to be the dual space to the space bounded continuous functions from S0 to
R and define B = Rk . Let D ⊂ A be the set of invariant probability measures and
E = 	. With these choices, the Minimax theorem implies that

min
μ

max
i
λi (μ) = max

p∈	 min
μ

∑

i

piλi (μ) (23)

where the minimum is taken over invariant probability measures μwith support in S0.
By the ergodic decomposition theorem Mañé (1983), the minimum of the right hand
side of (23) is attained at an ergodic probability measure with support in S0. Thus, the
equivalence of the conditions is established. ��

The proof of the second assertion of the theorem follows from the next two lemmas.

Lemma 5 For all ε > 0, there exists a η > 0 such that μ(Sη) ≤ ε for every invariant
probability measure μ with μ(S\S0) = 1.

Proof Suppose to the contrary, there exists ε > 0 and invariant measures μn such
that μn(S\S0) = 1 and μ(S1/n) > ε for all n ≥ 1. By Proposition 1, λ∗(μn) = 0
for all n. Let μ be a weak* limit point of these measures. Then μ(S0) ≥ ε and
λ∗(μ) = 0. Since S = S0 ∪ S\S0 and S0,S\S0 are invariant, there exists α > 0 such
that μ = αν0 + (1 − α)ν1 where νi are invariant measures satisfying ν0(S0) = 1 and
ν1(S\S0) = 1. By Proposition 1, λ∗(ν1) = 0. By assumption, λ∗(ν0) > 0. Hence,
0 = λ∗(μ) ≥ αλ∗(ν0) > 0, a contradiction. ��
Lemma 6 For all x ∈ S\S0, with probability one the set of weak* limit points of�t is
a nonempty compact set consisting of invariant probabilitiesμ such thatμ(S\S0) = 1.

Proof The process {Xt }∞t=0 being a Feller Markov chain over a compact set S, the set
of weak* limit points of {�t }∞t=0 is almost surely a non-empty compact subset of P
consisting of invariant probabilities. To see why this latter point is true, let h : S → R
be continuous function and define

g(x, ξ) = h(x ◦ f (x, ξ)) and ḡ(x) =
∫

S

g(x, ξ)m(dξ).

Since Xt+1 = Xt ◦ f (Xt , ξt+1), h(Xt+1) = g(Xt , ξt+1) and

lim
t→∞

∫

S

h(x)�t (dx)−
∫

S

Ph(x)�t (dx)

= lim
t→∞

1

t

⎛

⎝
t∑

s=1

h(Xs)−
∫

S

h( f (Xs, ξ) ◦ Xs)m(dξ)

⎞

⎠

= lim
t→∞

1

t

(
t−1∑

s=0

g(Xs, ξs+1)− ḡ(Xs)

)

+ 1

t
(ḡ(Xt )− ḡ(X0))

= 0 almost surely.
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where the last line follows from assertion (i) of Lemma 3. Hence,
∫

S h(x)μ(dx) =∫
S Ph(x)μ(dx) with probability one for weak* limit points μ of �t . Since S is com-

pact, the set of continuous functions from S to R is separable metric space and with
probability one

∫
S h(x)μ(dx) = ∫

S Ph(x)μ(dx) for all weak* limit points of �t

and all continuous functions h : S → R. Thus, the weak* limit points of �t are
almost-surely invariant probability measures.

Assertion (i) of Lemma 3 applied to g(x, ξ) = log( fi (x, ξ)) gives we have

lim
t→∞

log Xi
t − log xi − ∑t−1

s=0 λi (Xs)

t
= 0.

Since lim supt→∞ 1
t

(
log Xi

t − log xi
) ≤ 0 almost surely, we get that

λ∗(μ) ≤ 0 (24)

almost surely for any weak* limit point μ of {�t }∞t=0.
Since S = S\S0 ∪ S0,S\S0 is invariant, and S0 is invariant, there exists α ∈ (0, 1]

such that μ = (1 − α)ν0 + αν1 where ν0 is an invariant probability measure with
ν0(S0) = 1 and ν1 is an invariant probability measure with ν1(S\S0) = 1. By Propo-
sition 1, λi (ν1) = 0 for all i. Thus, (1 − α)λi (ν0) ≤ 0 for all i . Since by assumption
λi (ν0) > 0 for some i, α must be 1. ��

A.3 Proof of Theorems 2 and 3

Lemma 7 There exists η > 0 and ε > 0 such that

(i) λ∗(μ) ≥ ε for every invariant probability μ with μ(Sη) = 1, and
(ii) Px[Xt /∈ Sη for some t] = 1 for all x ∈ S\S0.

Proof To prove (i), assume to the contrary that there exists a sequence {μn}∞n=1 of
invariant probabilities such that λ∗(μn) ≤ 1/n and μn(S1/n) = 1. Let μ be a weak*
limit point of the {μn}∞n=1. Hence λ∗(μ) = 0 by continuity of λ∗, and μ(S0) = 1
since μn(Sa) = 1 for all a > 0 and n large enough. However, this contradicts the
assumption that λ∗(μ) > 0. Hence, there exists ε > 0 and η > 0 such that (i) holds.

To prove (i i), let E be the event E = {∀t ≥ 0 : Xt ∈ Sη}.On E,�t is almost surely
supported by Sη. Hence, by (i), λ∗(μ) ≥ ε almost surely on E for any weak* limit
pointμ of�t . This contradicts (24) in the proof of Lemma 6. Hence, E has probability
zero, ��

We now pass to the proof of Theorem 2. Let η > 0 be like in Lemma 7 (ii) and 

the probability on S\Sη given by the irreducibility assumption. Then, for all x ∈ S\S0
and every Borel set A ⊂ SηPx[∃n ≥ 1 Xn ∈ A] > 0 whenever 
(A) > 0. In
other words, {Xt } is a 
-irreducible Markov chain on S\S0 in the sense of Meyn
and Tweedie (1993, Chapter 4, Section 4.2). It then follows [see Meyn and Tweedie
(1993, Proposition 10.1.1, Theorem 10.4.4)] that {Xt } admits at most one invariant
probability measure on S\S0 and Theorem 2 follows from Lemma 6.
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678 S. J. Schreiber et al.

If one now assume that {Xt } is strongly irreducible over S\Sη then {Xt } becomes
Harris recurrent and aperiodic on S\S0. Since, by Theorem 2 it is a positive
Harris chain, Theorem 3 follows from Orey’s theorem [see Meyn and Tweedie (1993,
Theorem 18.1.2)].

A.4 Proof of Proposition 2

Assume to the contrary that there exists a sequence of fitness maps {gn = (g1
n, . . . ,

gk
n)}∞n=1 satisfying assumptions A3–A4 such that

lim
n→∞ sup

x∈S
E[‖gn(x, ξ)− f (x, ξ)‖] = 0 (25)

and

max
i

∫
log(gi

n(x, ξ))m(dξ)μn(dx) ≤ 0

where μn is an invariant measure, supported by S0, for the operator Pn associated to
the Markov chain

Xt+1 = gn(Xt , ξt+1) ◦ Xt .

By compactness of S we may assume that μn → μ in the weak* topology. Since
α ≤ fi ≤ β for all i and (25) holds, it follows that

lim
n→∞

∫
log(gi

n(x, ξ))m(dξ)μn(dx) =
∫

log( fi (x, ξ))m(dξ)μ(dx).

Hence, λi (μ) ≤ 0 for all i . It remains to prove that μ is invariant for P to reach a
contradiction. Let h : S �→ R be a continuous map. Let ε > 0. By uniform continuity
there exists δ > 0 such that for all x, u, v ∈ S,

‖u − v‖ ≤ δ ⇒ |h(x ◦ u)− h(x ◦ v)| ≤ ε.

Thus

|Pnh(x)− Ph(x)| = |E[h(x ◦ gn(x, ξ))− h(x ◦ f (x, ξ))]|
≤ 2‖h‖P[‖gn(x, ξ)− f (x, ξ)‖ ≥ δ] + ε

≤ 2‖h‖E[‖gn(x, ξ)− f (x, ξ)‖]
δ

+ ε.

It then follows from (25) that limn→∞ Pnh(x) = Ph(x) uniformly in x. Therefore

lim
n→∞

∫
Pnh(x)μn(dx) =

∫
Ph(x)μ(dx).
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Since by invariance of μn for Pn

lim
n→∞

∫
Pnh(x)μn(dx) = lim

n→∞

∫
h(x)μn(dx) = lim

n→∞

∫
h(x)μ(dx)

we get

∫
Ph(x)μ(dx) =

∫
h(x)μ(dx),

proving that μ is invariant for P.

Appendix B: Proofs for the continuous time models

B.1 Proof of Theorem 4

Let L be the infinitesimal generator of {Xt }t≥0. It acts on C2 functions according to
the formula

Lψ(x) =
∑

i

∂ψ

∂xi
(x)xi Fi (x)+ Aψ(x) (26)

where

Aψ(x) = 1

2

∑

i, j

xix j ai j (x)
∂2ψ

∂xix j
(x) (27)

By Ito’s formulae

ψ(Xt )− ψ(x)−
t∫

0

Lψ(Xs)ds = Mt

is a martingale given by M0 = 0 and

d Mt =
k∑

i=1

∂

∂xi
(Xt )

m∑

j=1

S j
i (Xt )d B j

t

where S j is the vector given by (6). Applying this to ψ(x) = log(xi ) gives

log(Xi
t )− log(xi )−

t∫

0

λi (Xs)ds = Mt

123
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with

d Mt =
m∑

j=1

�
j
i (Xt )d B j

t .

Hence

d〈M〉t =
m∑

j=1

((�
j
i (Xt ))

2dt

so that

〈M〉t ≤ Ct.

Thus, by the strong law of large numbers for martingales,

lim
t→∞

log(Xi
t )− log(xi )− ∫ t

0 λi (Xs)ds

t
= 0

almost surely. The end of the proof is like the proof of Theorem 1. Details are left to
the reader.

B.2 Proof of Theorem 5

By the nondegeneracy assumption, there exists (see e.g Durrett 1996, Theorem 3.8,
Chapter 7) a continuous positive kernel pt (x, y) such that

Ptψ(x) =
∫

pt (x, y)ψ(y)dy.

Therefore, Theorem 1 applies to Pt for any t > 0.
Let πt denote the unique positive invariant probability measure of Pt for t > 0.We

claim that πt is independent of t. Indeed, πt is invariant for Pkt = Pk
t for all t > 0

and k ∈ N. It follows that πk/2n is independent of k and n, and so, by the density of
the dyadic rational numbers in the reals, πt = π for all t > 0.

Now, for any continuous bounded function ψ and any 0 ≤ s < 1,

|Pn+sψ(x)− πψ | = |Pn(Psψ)(x)− π(Psψ)| ≤ ‖Pn(x, .)− π‖||Psψ ||∞
where πψ stands for

∫
ψdπ. Hence,

lim
n→∞ ‖Pn+s(x, .)− π‖ = 0

so assertion (i) of the theorem holds. The second assertion follows from the uniqueness
of π and Theorem 4.
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B.3 Proof of Proposition 3

Suppose (10) is a δ-perturbation of (5) with X0 = X̃0 = x. Then for all t ≥ 0

Xt − X̃t =
t∫

0

(Xs ◦ F(Xs)− X̃s ◦ F(X̃s))ds +
t∫

0

(X̃s ◦ F(X̃s)− X̃s ◦ F̃(X̃s))ds

+
t∫

0

(Xs ◦�(Xs)−X̃s ◦�(X̃s))d Bs+
t∫

0

(X̃s ◦�(X̃s)−X̃s ◦ �̃(X̃s))d Bs

Let

v(t) = E

[
‖Xt − X̃t‖2

]
.

Then, by the Cauchy-Schwartz inequality, the fact that ‖Xs‖ ≤ 1, and the Ito isometry

v(t) ≤ 4E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥

t∫

0

Xs ◦ F(Xs)−X̃s ◦ F(X̃s)ds

∥
∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
∥

t∫

0

X̃s ◦ F(X̃s)−X̃s ◦ F̃(X̃s)ds

∥
∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
∥

t∫

0

Xs ◦�(Xs)−X̃s ◦�(X̃s)dBs

∥
∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
∥

t∫

0

X̃s ◦�(X̃s)−X̃s ◦ �̃(X̃s)dBs

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

≤ 4t

t∫

0

E[‖Xs ◦ F(Xs)−X̃s ◦ F(X̃s))‖2]ds+4t

t∫

0

E[‖F(X̃s)− F̃(X̃s)‖2]ds

+4

t∫

0

E[‖Xs ◦�(Xs)− X̃s ◦�(X̃s)‖2]ds + 4

t∫

0

E[‖�(X̃s)− �̃(X̃s)‖2]ds

Using the assumption and the Lipschitz continuity of X ◦ F(X) and X ◦ �(X) it
follows that, for some constant L ,

v(t) ≤ 4t L

t∫

0

v(s)ds + 4t2δ2 + 4L

t∫

0

v(s)ds + 4tδ2.

Thus, for all t ≤ T

v(t) ≤ A

t∫

0

v(s)ds + Bδ2
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682 S. J. Schreiber et al.

where A = 4L(T + 1) and B = 4T (T + 1). Hence, by Gronwall’s lemma

v(t) ≤ et A Bδ2

for all t ≤ T . The remainder of proof is similar to the proof of 2. The details are left
to the reader.
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