16,480 research outputs found

    The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution

    Full text link
    Post-common-envelope binaries (PCEBs) have been frequently used to observationally constrain models of close-compact-binary evolution, in particular common-envelope (CE) evolution. However, recent surveys have detected PCEBs consisting of a white dwarf (WD) exclusively with an M dwarf companion. Thus, we have been essentially blind with respect to PCEBs with more massive companions. Recently, the second PCEB consisting of a WD and a G-type companion, the spectacularly self-lensing binary KOI-3278, has been identified. This system is different from typical PCEBs not only because of the G-type companion, but also because of its long orbital period. Here we investigate whether the existence of KOI-3278 provides new observational constraints on theories of CE evolution. We reconstruct its evolutionary history and predict its future using BSE, clarifying the proper use of the binding energy parameter in this code. We find that a small amount of recombination energy, or any other source of extra energy, is required to reconstruct the evolutionary history of KOI-3278. Using BSE we derive progenitor system parameters of M1,i = 2.450 Msun, M2,i = 1.034 Msun, and Porb,i ~ 1300 d. We also find that in ~9 Gyr the system will go through a second CE phase leaving behind a double WD, consisting of a C/O WD and a He WD with masses of 0.636 Msun and 0.332 Msun, respectively. After IK Peg, KOI-3278 is the second PCEB that clearly requires an extra source of energy, beyond that of orbital energy, to contribute to the CE ejection. Both systems are special in that they have long orbital periods and massive secondaries. This may also indicate that the CE efficiency increases with secondary mass.Comment: Accepted for publication in A&A Letters, 4 pages, 2 figure

    Persistence in fluctuating environments

    Get PDF
    Understanding under what conditions interacting populations, whether they be plants, animals, or viral particles, coexist is a question of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt coexistence. To better understand this interplay between these deterministic and stochastic forces, we develop a mathematical theory extending the nonlinear theory of permanence for deterministic systems to stochastic difference and differential equations. Our condition for coexistence requires that there is a fixed set of weights associated with the interacting populations and this weighted combination of populations' invasion rates is positive for any (ergodic) stationary distribution associated with a subcollection of populations. Here, an invasion rate corresponds to an average per-capita growth rate along a stationary distribution. When this condition holds and there is sufficient noise in the system, we show that the populations approach a unique positive stationary distribution. Moreover, we show that our coexistence criterion is robust to small perturbations of the model functions. Using this theory, we illustrate that (i) environmental noise enhances or inhibits coexistence in communities with rock-paper-scissor dynamics depending on correlations between interspecific demographic rates, (ii) stochastic variation in mortality rates has no effect on the coexistence criteria for discrete-time Lotka-Volterra communities, and (iii) random forcing can promote genetic diversity in the presence of exploitative interactions.Comment: 25 page

    From Loop Groups to 2-Groups

    Get PDF
    We describe an interesting relation between Lie 2-algebras, the Kac-Moody central extensions of loop groups, and the group String(n). A Lie 2-algebra is a categorified version of a Lie algebra where the Jacobi identity holds up to a natural isomorphism called the "Jacobiator". Similarly, a Lie 2-group is a categorified version of a Lie group. If G is a simply-connected compact simple Lie group, there is a 1-parameter family of Lie 2-algebras g_k each having Lie(G) as its Lie algebra of objects, but with a Jacobiator built from the canonical 3-form on G. There appears to be no Lie 2-group having g_k as its Lie 2-algebra, except when k = 0. Here, however, we construct for integral k an infinite-dimensional Lie 2-group whose Lie 2-algebra is equivalent to g_k. The objects of this 2-group are based paths in G, while the automorphisms of any object form the level-k Kac-Moody central extension of the loop group of G. This 2-group is closely related to the kth power of the canonical gerbe over G. Its nerve gives a topological group that is an extension of G by K(Z,2). When k = +-1, this topological group can also be obtained by killing the third homotopy group of G. Thus, when G = Spin(n), it is none other than String(n).Comment: 40 page

    Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta

    Full text link
    Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly-interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant dd. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta ±(π/2)(/d)\pm (\pi/2) (\hbar / d) in the momentum distribution function.Comment: See also Viewpoint: Emerging Quantum Order in an Expanding Gas, Physics 8, 99 (2015

    The Dwarf Nova Outbursts of Nova Her 1960 (=V446 Her)

    Get PDF
    V446 Her is the best example of an old nova which has developed dwarf nova eruptions in the post-nova state. We report on observed properties of the long-term light curve of V446 Her, using photometry over 19 years. Yearly averages of the outburst magnitudes shows a decline of ~0.013 mag/yr, consistent with the decline of other post-novae that do not have dwarf nova outbursts. Previous suggestions of bimodal distributions of the amplitudes and widths of the outbursts are confirmed. The outbursts occur at a mean spacing of 18 days but the range of spacings is large (13-30 days). From simulations of dwarf nova outbursts it has been predicted that the outburst spacing in V446 Her will increase as M-dot from the red dwarf companion slowly falls following the nova; however the large intrinsic scatter in the spacings serves to hide any evidence of this effect. We do find a systematic change in the outburst pattern in which the brighter, wider type of outbursts disappeared after late 2003, and this phenomenon is suggested to be due to falling M-dot following the nova.Comment: To appear at the Astronomical Journal; 7 pages, 1 table, 11 figure
    corecore