798 research outputs found

    Application of neural networks to unsteady aerodynamic control

    Get PDF
    The problem under consideration in this viewgraph presentation is to understand, predict, and control the fluid mechanics of dynamic maneuvers, unsteady boundary layers, and vortex dominated flows. One solution is the application of neural networks demonstrating closed-loop control. Neural networks offer unique opportunities: simplify modeling of three dimensional, vortex dominated, unsteady separated flow fields; are effective means for controlling unsteady aerodynamics; and address integration of sensors, controllers, and time lags into adaptive control systems

    Bose Einstein Condensate in a Box

    Full text link
    Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.Comment: 4 pages, 5 figure

    Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health

    Get PDF
    Numerous epidemiologic time-series studies have shown generally consistent associations of cardiovascular hospital admissions and mortality with outdoor air pollution, particularly mass concentrations of particulate matter (PM) ≤2.5 or ≤10 μm in diameter (PM(2.5), PM(10)). Panel studies with repeated measures have supported the time-series results showing associations between PM and risk of cardiac ischemia and arrhythmias, increased blood pressure, decreased heart rate variability, and increased circulating markers of inflammation and thrombosis. The causal components driving the PM associations remain to be identified. Epidemiologic data using pollutant gases and particle characteristics such as particle number concentration and elemental carbon have provided indirect evidence that products of fossil fuel combustion are important. Ultrafine particles < 0.1 μm (UFPs) dominate particle number concentrations and surface area and are therefore capable of carrying large concentrations of adsorbed or condensed toxic air pollutants. It is likely that redox-active components in UFPs from fossil fuel combustion reach cardiovascular target sites. High UFP exposures may lead to systemic inflammation through oxidative stress responses to reactive oxygen species and thereby promote the progression of atherosclerosis and precipitate acute cardiovascular responses ranging from increased blood pressure to myocardial infarction. The next steps in epidemiologic research are to identify more clearly the putative PM casual components and size fractions linked to their sources. To advance this, we discuss in a companion article (Sioutas C, Delfino RJ, Singh M. 2005. Environ Health Perspect 113:947–955) the need for and methods of UFP exposure assessment

    Friedel oscillations in a gas of interacting one-dimensional fermionic atoms confined in a harmonic trap

    Full text link
    Using an asymptotic phase representation of the particle density operator ρ^(z)\hat{\rho}(z) in the one-dimensional harmonic trap, the part δρ^F(z)\delta \hat{\rho}_F(z) which describes the Friedel oscillations is extracted. The expectation value with respect to the interacting ground state requires the calculation of the mean square average of a properly defined phase operator. This calculation is performed analytically for the Tomonaga-Luttinger model with harmonic confinement. It is found that the envelope of the Friedel oscillations at zero temperature decays with the boundary exponent ν=(K+1)/2\nu = (K+1)/2 away from the classical boundaries. This value differs from that known for open boundary conditions or strong pinning impurities. The soft boundary in the present case thus modifies the decay of Friedel oscillations. The case of two components is also discussed.Comment: Revised version to appear in Journal of Physics B: Atomic, Molecular and Optical Physic

    Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap

    Full text link
    An asymptotically exact many body theory for spin polarized interacting fermions in a one-dimensional harmonic atom trap is developed using the bosonization method and including backward scattering. In contrast to the Luttinger model, backscattering in the trap generates one-particle potentials which must be diagonalized simultaneously with the two-body interactions. Inclusion of backscattering becomes necessary because backscattering is the dominant interaction process between confined identical one-dimensional fermions. The bosonization method is applied to the calculation of one-particle matrix elements at zero temperature. A detailed discussion of the validity of the results from bosonization is given, including a comparison with direct numerical diagonalization in fermionic Hilbert space. A model for the interaction coefficients is developed along the lines of the Luttinger model with only one coupling constant KK. With these results, particle densities, the Wigner function, and the central pair correlation function are calculated and displayed for large fermion numbers. It is shown how interactions modify these quantities. The anomalous dimension of the pair correlation function in the center of the trap is also discussed and found to be in accord with the Luttinger model.Comment: 19 pages, 5 figures, journal-ref adde

    Analysis of the consistency of parity-odd nonbirefringent modified Maxwell theory

    Full text link
    There exist two deformations of standard electrodynamics that describe Lorentz symmetry violation in the photon sector: CPT-odd Maxwell-Chern-Simons theory and CPT-even modified Maxwell theory. In this article, we focus on the parity-odd nonbirefringent sector of modified Maxwell theory. It is coupled to a standard Dirac theory of massive spin-1/2 fermions resulting in a modified quantum electrodynamics (QED). This theory is discussed with respect to properties such as microcausality and unitarity, where it turns out that these hold. Furthermore, a priori, the limit of the theory for vanishing Lorentz-violating parameters seems to be discontinuous. Since it is not clear, whether this is a gauge artifact, the cross section for a physical process - modified Compton scattering - is calculated numerically. Despite the numerical instabilities occurring for scattering of unpolarized electrons off polarized photons in the second physical polarization state, it is shown that for Lorentz-violating parameters much smaller than 1 the modified theory approaches standard QED, which is strengthened by analytical investigations. Hence, the theory proves to be consistent, at least with regard to the investigations performed. This leads to the interesting result of having a well-defined parity-odd extension of QED.Comment: 41 pages, 28 figure

    Rapid sympathetic cooling to Fermi degeneracy on a chip

    Full text link
    Neutral fermions present new opportunities for testing many-body condensed matter systems, realizing precision atom interferometry, producing ultra-cold molecules, and investigating fundamental forces. However, since their first observation, quantum degenerate Fermi gases (DFGs) have continued to be challenging to produce, and have been realized in only a handful of laboratories. In this Letter, we report the production of a DFG using a simple apparatus based on a microfabricated magnetic trap. Similar approaches applied to Bose-Einstein Condensation (BEC) of 87Rb have accelerated evaporative cooling and eliminated the need for multiple vacuum chambers. We demonstrate sympathetic cooling for the first time in a microtrap, and cool 40K to Fermi degeneracy in just six seconds -- faster than has been possible in conventional magnetic traps. To understand our sympathetic cooling trajectory, we measure the temperature dependence of the 40K-87Rb cross-section and observe its Ramsauer-Townsend reduction.Comment: 5 pages, 4 figures (v3: new collision data, improved atom number calibration, revised text, improved figures.

    Urban and Rural-residential Land Uses: Their Role in Watershed Health and the Rehabilitation of Oregon’s Wild Salmonids

    Get PDF
    This technical report by the Independent Multidisciplinary Science Team (IMST) is a comprehensive review of how human activities in urban and rural-residential areas can alter aquatic ecosystems and resulting implications for salmonid recovery, with a geographic focus on the state of Oregon. The following topics are considered in the form of science questions, and comprise the major components of this report: The effects of urban and rural-residential development on Oregon’s watersheds and native wild salmonids. Actions that can be used to avoid or mitigate undesirable changes to aquatic ecosystems near developing urban and rural-residential areas. The benefits and pitfalls of salmonid habitat rehabilitation within established urban or rural-residential areas. Suggested research and monitoring focus areas that will facilitate the recovery of salmonid populations affected by development. The fundamental concepts presented in this report should be applicable to most native salmonid populations across the state. IMST encourages managers and policy-makers with interest in a specific species or geographic region to carefully research local ecological conditions, as well as specific life history characteristics of salmonids in the region. Conserving watershed condition and salmonids in the face of increasing development requires consideration of two distinct sets of processes. First are the human social and economic processes that drive patterns in land use change. Second are the ecological processes, altered by land use, that underlie salmonid habitat changes. This report focuses on the latter and summarizes the effects of rural-residential and urban development on native, wild salmonid populations and the watersheds upon which they depend
    corecore