435 research outputs found

    The Impact of Cash Flow Volatility on Discretionary Investment and the Costs of Debt and Equity Financing

    Get PDF
    We show that higher cash flow volatility is associated with lower average levels of investment in capital expenditures, R&D, and advertising. This association suggests that firms do not use external capital markets to fully cover cash flow shortfalls but rather permanently forgo investment. Cash flow volatility also is associated with higher costs of accessing external capital. Moreover, these higher costs, as measured by some proxies, imply a greater sensitivity of investment to cash flow volatility. Thus, cash flow volatility not only increases the likelihood that a firm will need to access capital markets, it also increases the costs of doing so

    Institutional Investments in Pure Play Stocks and Implications for Hedging Decisions

    Get PDF
    We show that institutions invest in stocks within an industry that maintain exposure to their underlying industry risk factor. These pure play stocks have greater numbers ofinstitutional investors and institutions systematically overweight them in their portfolios while underweighting low industry-exposure stocks of firms in the same nominal industry.Pure play stocks also have greater liquidity measured by stock turnover and price impact. An implication of these results is that catering to these preferences could be an important variable in firms\u27 risk management decisions, potentially offsetting incentives to reduce volatility via hedging. We further characterize institutions\u27 investments for pureplay stocks across institution type, industries, and over time

    Why Firms Use Currency Derivatives

    Get PDF
    We examine the use of currency derivatives in order to differentiate among existing theories of hedging behavior. Firms with greater growth opportunities and tighter financial constraints are more likely to use currency derivatives. This result suggests that firms might use derivatives to reduce cash flow variation that might otherwise preclude firms from investing in valuable growth opportunities. Firms with extensive foreign exchange-rate exposure and economies of scale in hedging activities are also more likely to use currency derivatives. Finally, the source of foreign exchange-rate exposure is an important factor in the choice among types of currency derivatives

    Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells

    Get PDF
    Diamond nanoparticles (nanodiamonds) have been recently proposed as new labels for cellular imaging. For small nanodiamonds (size <40 nm) resonant laser scattering and Raman scattering cross-sections are too small to allow single nanoparticle observation. Nanodiamonds can however be rendered photoluminescent with a perfect photostability at room temperature. Such a remarkable property allows easier single-particle tracking over long time-scales. In this work we use photoluminescent nanodiamonds of size <50 nm for intracellular labeling and investigate the mechanism of their uptake by living cells . By blocking selectively different uptake processes we show that nanodiamonds enter cells mainly by endocytosis and converging data indicate that it is clathrin mediated. We also examine nanodiamonds intracellular localization in endocytic vesicles using immunofluorescence and transmission electron microscopy. We find a high degree of colocalization between vesicles and the biggest nanoparticles or aggregates, while the smallest particles appear free in the cytosol. Our results pave the way for the use of photoluminescent nanodiamonds in targeted intracellular labeling or biomolecule deliver

    Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale

    Full text link
    Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable, and included in individual particles at suitable concentrations (singly or in large numbers). In this letter, we combine simulations, theory and experiment to provide the first comprehensive and generic prediction of the size, temperature and nitrogen-concentration dependent stability of optically active NV defects in nanodiamonds.Comment: Published in Nano Letters August 2009 24 pages, 6 figure

    Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    Get PDF
    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 Όg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs

    Vaccination against nonmutated neoantigens induced in recurrent and future tumors

    Get PDF
    Vaccination of patients against neoantigens expressed in concurrent tumors, recurrent tumors, or tumors developing in individuals at risk of cancer is posing major challenges in terms of which antigens to target and is limited to patients expressing neoantigens in their tumors. Here, we describe a vaccination strategy against antigens that were induced in tumor cells by downregulation of the peptide transporter associated with antigen processing (TAP). Vaccination against TAP downregulation-induced antigens was more effective than vaccination against mutation-derived neoantigens, was devoid of measurable toxicity, and inhibited the growth of concurrent and future tumors in models of recurrence and premalignant disease. Human CD8(+) T cells stimulated with TAP(low) dendritic cells elicited a polyclonal T-cell response that recognized tumor cells with experimentally reduced TAP expression. Vaccination against TAP downregulation-induced antigens overcomes the main limitations of vaccinating against mostly unique tumor-resident neoantigens and could represent a simpler vaccination strategy that will be applicable to most patients with cancer.Experimental cancer immunology and therap

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
    • 

    corecore