1,467 research outputs found
Strategies for the production of genetically identical monkeys by embryo splitting
Genetically identical rhesus monkeys would have tremendous utility as models for the study of human disease and would be particularly valuable for vaccine trials and tissue transplantation studies where immune function is important. While advances in nuclear transfer technology may someday enable monkeys to be cloned with some efficiency, embryo splitting may be a more realistic approach to creating pairs of genetically identical monkeys. Although several different approaches to embryo splitting, including blastocyst bisection and blastomere separation, have been used successfully in rodents and domestic species for production of pairs and sets of identical offspring, efforts to create monozygotic twins in rhesus monkeys using these approaches have not met with similar success. Aggregation of split embryos with other types of blastomeres, such as tetraploid and developmentally asynchronous blastomeres, that could potentially increase their cell numbers and developmental competence without contributing to term development has been investigated as an alternative approach to creating monozygotic twin monkeys. The major challenges encountered with respect to the efficient production of monozygotic twins in rhesus monkeys and potential strategies to overcome these challenges are discussed
Conformal invariance in two-dimensional turbulence
Simplicity of fundamental physical laws manifests itself in fundamental
symmetries. While systems with an infinity of strongly interacting degrees of
freedom (in particle physics and critical phenomena) are hard to describe, they
often demonstrate symmetries, in particular scale invariance. In two dimensions
(2d) locality often promotes scale invariance to a wider class of conformal
transformations which allow for nonuniform re-scaling. Conformal invariance
allows a thorough classification of universality classes of critical phenomena
in 2d. Is there conformal invariance in 2d turbulence, a paradigmatic example
of strongly-interacting non-equilibrium system? Here, using numerical
experiment, we show that some features of 2d inverse turbulent cascade display
conformal invariance. We observe that the statistics of vorticity clusters is
remarkably close to that of critical percolation, one of the simplest
universality classes of critical phenomena. These results represent a new step
in the unification of 2d physics within the framework of conformal symmetry.Comment: 10 pages, 5 figures, 1 tabl
Lateral Ordering of InAs Quantum Dots on Cross-hatch Patterned GaInP
We report the use of partially relaxed tensile as well as compressively strained GaInP layers for lateral ordering of InAs quantum dots with the aid of misfit dislocation networks. The strained layers and the InAs QDs were characterized by means of atomic force microscopy, scanning electron microscopy, and X-ray reciprocal space mapping. The QD-ordering properties of compressive GaInP are found to be very similar with respect to the use of compressive GaInAs, while a significantly stronger ordering of QDs was observed on tensile GaInP. Furthermore, we observed a change of the major type of dislocation in GaInP layers as the growth temperature was modified
Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs
The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs
The role of contracting strategies in social value implementation
There has been an increasing demand for social value (SV) implementation to assume a cardinal position in the infrastructure delivery efforts of infrastructure client organisations (ICOs). However, whereas successful implementation has been recorded in some projects, monumental failures have also been recorded in others. This variance in implementation performance is a cause for concern. The mode of governance applied in an infrastructure delivery endeavour has been identified as capable of influencing the implementation of SV. This observation makes imperative an investigation into the role of contracting strategies – an integral part of governance modes – adopted by ICOs on SV implementation performance. This is the aim of this study. Using a case study approach, three infrastructure projects which used different contracting strategies were selected from two different countries, the UK and Nigeria. Semistructured interviews were conducted with ICO representatives on these projects and subsequently analysed using qualitative content analysis. Findings confirmed that the kind of contract adopted by ICOs influenced their ability to drive the successful implementation of desirable SV objectives through their supply chain. It is therefore recommended that ICOs ensure that the selected contracting strategies are capable of ensuring successful implementation of the desired objectives
Mechanisms of Allergen-Antibody Interaction of Cockroach Allergen Bla g 2 with Monoclonal Antibodies That Inhibit IgE Antibody Binding
BACKGROUND: Cockroach allergy is strongly associated with asthma, and involves the production of IgE antibodies against inhaled allergens. Reports of conformational epitopes on inhaled allergens are limited. The conformational epitopes for two specific monoclonal antibodies (mAb) that interfere with IgE antibody binding were identified by X-ray crystallography on opposite sites of the quasi-symmetrical cockroach allergen Bla g 2. METHODOLOGY/PRINCIPAL FINDINGS: Mutational analysis of selected residues in both epitopes was performed based on the X-ray crystal structures of the allergen with mAb Fab/Fab' fragments, to investigate the structural basis of allergen-antibody interactions. The epitopes of Bla g 2 for the mAb 7C11 or 4C3 were mutated, and the mutants were analyzed by SDS-PAGE, circular dichroism, and/or mass spectrometry. Mutants were tested for mAb and IgE antibody binding by ELISA and fluorescent multiplex array. Single or multiple mutations of five residues from both epitopes resulted in almost complete loss of mAb binding, without affecting the overall folding of the allergen. Preventing glycosylation by mutation N268Q reduced IgE binding, indicating a role of carbohydrates in the interaction. Cation-π interactions, as well as electrostatic and hydrophobic interactions, were important for mAb and IgE antibody binding. Quantitative differences in the effects of mutations on IgE antibody binding were observed, suggesting heterogeneity in epitope recognition among cockroach allergic patients. CONCLUSIONS/SIGNIFICANCE: Analysis by site-directed mutagenesis of epitopes identified by X-ray crystallography revealed an overlap between monoclonal and IgE antibody binding sites and provided insight into the B cell repertoire to Bla g 2 and the mechanisms of allergen-antibody recognition, including involvement of carbohydrates
A Coevolutionary Residue Network at the Site of a Functionally Important Conformational Change in a Phosphohexomutase Enzyme Family
Coevolution analyses identify residues that co-vary with each other during evolution, revealing sequence relationships unobservable from traditional multiple sequence alignments. Here we describe a coevolutionary analysis of phosphomannomutase/phosphoglucomutase (PMM/PGM), a widespread and diverse enzyme family involved in carbohydrate biosynthesis. Mutual information and graph theory were utilized to identify a network of highly connected residues with high significance. An examination of the most tightly connected regions of the coevolutionary network reveals that most of the involved residues are localized near an interdomain interface of this enzyme, known to be the site of a functionally important conformational change. The roles of four interface residues found in this network were examined via site-directed mutagenesis and kinetic characterization. For three of these residues, mutation to alanine reduces enzyme specificity to ∼10% or less of wild-type, while the other has ∼45% activity of wild-type enzyme. An additional mutant of an interface residue that is not densely connected in the coevolutionary network was also characterized, and shows no change in activity relative to wild-type enzyme. The results of these studies are interpreted in the context of structural and functional data on PMM/PGM. Together, they demonstrate that a network of coevolving residues links the highly conserved active site with the interdomain conformational change necessary for the multi-step catalytic reaction. This work adds to our understanding of the functional roles of coevolving residue networks, and has implications for the definition of catalytically important residues
- …