20 research outputs found

    Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of maize for human and animal nutrition, but also as a source for bio-energy is rapidly increasing. Maize yield is a quantitative trait controlled by many genes with small effects, spread throughout the genome. The precise location of the genes and the identity of the gene networks underlying maize grain yield is unknown. The objective of our study was to contribute to the knowledge of these genes and gene networks by transcription profiling with microarrays.</p> <p>Results</p> <p>We assessed the grain yield and grain dry matter content (an indicator for early maturity) of 98 maize hybrids in multi-environment field trials. The gene expression in seedlings of the parental inbred lines, which have four different genetic backgrounds, was assessed with genome-scale oligonucleotide arrays. We identified genes associated with grain yield and grain dry matter content using a newly developed two-step correlation approach and found overlapping gene networks for both traits. The underlying metabolic pathways and biological processes were elucidated. Genes involved in sucrose degradation and glycolysis, as well as genes involved in cell expansion and endocycle were found to be associated with grain yield.</p> <p>Conclusions</p> <p>Our results indicate that the capability of providing energy and substrates, as well as expanding the cell at the seedling stage, highly influences the grain yield of hybrids. Knowledge of these genes underlying grain yield in maize can contribute to the development of new high yielding varieties.</p

    Root response to temperature extremes: association mapping of temperate maize (Zea mays L)

    Get PDF
    Little is known about the genetic control of the root architecture of maize (Zea mays L) and its response to temperature extremes. An association mapping panel, including 32 flint and 42 dent inbred lines, was characterized for root traits. The growth of axile and lateral roots was assessed non-destructively in growth pouches at 16°C (chilling), 28°C (control) and 36°C (heat). Association mapping was done using the PKOpt mixed-model associationmapping approach. Heat slowed down the development of seedling roots to a lesser extent than chilling, but differences between the heterotic groups were observed mainly at optimal temperature. Of 1,415 AFLP markers, 70 showed significant marker-trait associations and 90 showed significant marker-trait associations with temperature interaction effects. Compared to the flint lines, the dents showed stronger growth of axile roots, especially under optimal conditions, and carried more of the trait-increasing alleles for the length of axile roots. In contrast, Benjamin the flints accumulated more root dry weight at low temperature and exclusively carried the alleles favoring tolerance to chilling. A combination of inbreds carrying alleles positive for performance under contrasting temperature conditions should lead to a complementary effect in the hybrid and would increase adaptation to a wider range of temperature

    Adapted to Roar: Functional Morphology of Tiger and Lion Vocal Folds

    Get PDF
    Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice

    Dynamics of disease characteristics and clinical management of critically ill COVID-19 patients over the time course of the pandemic: an analysis of the prospective, international, multicentre RISC-19-ICU registry.

    Get PDF
    BACKGROUND It remains elusive how the characteristics, the course of disease, the clinical management and the outcomes of critically ill COVID-19 patients admitted to intensive care units (ICU) worldwide have changed over the course of the pandemic. METHODS Prospective, observational registry constituted by 90 ICUs across 22 countries worldwide including patients with a laboratory-confirmed, critical presentation of COVID-19 requiring advanced organ support. Hierarchical, generalized linear mixed-effect models accounting for hospital and country variability were employed to analyse the continuous evolution of the studied variables over the pandemic. RESULTS Four thousand forty-one patients were included from March 2020 to September 2021. Over this period, the age of the admitted patients (62 [95% CI 60-63] years vs 64 [62-66] years, p < 0.001) and the severity of organ dysfunction at ICU admission decreased (Sequential Organ Failure Assessment 8.2 [7.6-9.0] vs 5.8 [5.3-6.4], p < 0.001) and increased, while more female patients (26 [23-29]% vs 41 [35-48]%, p < 0.001) were admitted. The time span between symptom onset and hospitalization as well as ICU admission became longer later in the pandemic (6.7 [6.2-7.2| days vs 9.7 [8.9-10.5] days, p < 0.001). The PaO2/FiO2 at admission was lower (132 [123-141] mmHg vs 101 [91-113] mmHg, p < 0.001) but showed faster improvements over the initial 5 days of ICU stay in late 2021 compared to early 2020 (34 [20-48] mmHg vs 70 [41-100] mmHg, p = 0.05). The number of patients treated with steroids and tocilizumab increased, while the use of therapeutic anticoagulation presented an inverse U-shaped behaviour over the course of the pandemic. The proportion of patients treated with high-flow oxygen (5 [4-7]% vs 20 [14-29], p < 0.001) and non-invasive mechanical ventilation (14 [11-18]% vs 24 [17-33]%, p < 0.001) throughout the pandemic increased concomitant to a decrease in invasive mechanical ventilation (82 [76-86]% vs 74 [64-82]%, p < 0.001). The ICU mortality (23 [19-26]% vs 17 [12-25]%, p < 0.001) and length of stay (14 [13-16] days vs 11 [10-13] days, p < 0.001) decreased over 19 months of the pandemic. CONCLUSION Characteristics and disease course of critically ill COVID-19 patients have continuously evolved, concomitant to the clinical management, throughout the pandemic leading to a younger, less severely ill ICU population with distinctly different clinical, pulmonary and inflammatory presentations than at the onset of the pandemic

    Small RNA-based prediction of hybrid performance in maize

    No full text
    Abstract Background Small RNA (sRNA) sequences are known to have a broad impact on gene regulation by various mechanisms. Their performance for the prediction of hybrid traits has not yet been analyzed. Our objective was to analyze the relation of parental sRNA expression with the performance of their hybrids, to develop a sRNA-based prediction approach, and to compare it to more common SNP and mRNA transcript based predictions using a factorial mating scheme of a maize hybrid breeding program. Results Correlation of genomic differences and messenger RNA (mRNA) or sRNA expression differences between parental lines with hybrid performance of their hybrids revealed that sRNAs showed an inverse relationship in contrast to the other two data types. We associated differences for SNPs, mRNA and sRNA expression between parental inbred lines with the performance of their hybrid combinations and developed two prediction approaches using distance measures based on associated markers. Cross-validations revealed parental differences in sRNA expression to be strong predictors for hybrid performance for grain yield in maize, comparable to genomic and mRNA data. The integration of both positively and negatively associated markers in the prediction approaches enhanced the prediction accurary. The associated sRNAs belong predominantly to the canonical size classes of 22- and 24-nt that show specific genomic mapping characteristics. Conclusion Expression profiles of sRNA are a promising alternative to SNPs or mRNA expression profiles for hybrid prediction, especially for plant species without reference genome or transcriptome information. The characteristics of the sRNAs we identified suggest that association studies based on breeding populations facilitate the identification of sRNAs involved in hybrid performance

    Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci

    Get PDF
    The identification of QTL involved in heterosis formation is one approach to unravel the not yet fully understood genetic basis of heterosis - the improved agronomic performance of hybrid F1 plants compared to their inbred parents. The identification of candidate genes underlying a QTL is important both for developing markers and determining the molecular genetic basis of a trait, but remains difficult owing to the large number of genes often contained within individual QTL. To address this problem in heterosis analysis, we applied a meta-analysis strategy for grain yield (GY) of Zea mays L. as example, incorporating QTL-, hybrid field-, and parental gene expression data

    Parental Expression Variation of Small RNAs Is Negatively Correlated with Grain Yield Heterosis in a Maize Breeding Population

    No full text
    Heterosis refers to a quantitative phenomenon in which F1 hybrid trait values exceed the mean of the parental values in a positive direction. Generally, it is dependent on a high degree of heterozygosity, which is maintained in hybrid breeding by developing parental lines in separate, genetically distinct heterotic groups. The mobility of small RNAs (sRNAs) that mediate epigenetic regulation of gene expression renders them promising candidates for modulating the action of combined diverse genomes in trans–and evidence already indicates their contribution to transgressive phenotypes. By sequencing small RNA libraries of a panel of 21 maize parental inbred lines we found a low overlap of 35% between the sRNA populations from both distinct heterotic groups. Surprisingly, in contrast to genetic or gene expression variation, parental sRNA expression variation is negatively correlated with grain yield (GY) heterosis. Among 0.595 million expressed sRNAs, we identified 9,767, predominantly 22- and 24-nt long sRNAs, which showed an association of their differential expression between parental lines and GY heterosis of the respective hybrids. Of these sRNAs, 3,485 or 6,282 showed an association with high or low GY heterosis, respectively, thus the low heterosis associated group prevailing at 64%. The heterosis associated sRNAs map more frequently to genes that show differential expression between parental lines than reference sets. Together these findings suggest that trans-chromosomal actions of sRNAs in hybrids might add up to a negative contribution in heterosis formation, mediated by unfavorable gene expression regulation. We further revealed an exclusive accumulation of 22-nt sRNAs that are associated with low GY heterosis in pericentromeric genomic regions. That recombinational suppression led to this enrichment is indicated by its close correlation with low recombination rates. The existence of this enrichment, which we hypothesize resulted from the separated breeding of inbred lines within heterotic groups, may have implications for hybrid breeding strategies addressing the recombinational constraints characteristic of complex crop genomes
    corecore