3,044 research outputs found
XPS and AFM study of interaction of organosilane and sizing with e-glass fibre surface
Organosilanes are often used in commercial sizings for glass fibres to provide wettability with the resin and promote strong interfacial adhesion to the matrix in a fibre reinforced polymer composite. The silane treatment is introduced as part of a complex deposition from an aqueous emulsion immediately at the spinaret and determines the optimum properties of the cured composite. To understand the interaction of organosilanes contained in sizings for glass surfaces, XPS was used to investigate the adsorption of γ-aminopropyltriethoxysilane (APS) from a simple sizing system containing a polyurethane (PU) film former. It has been found that both APS and the sizing (containing APS and PU) deposits on E-glass fibre surfaces contained components of differing hydrolytic stability. The differences observed in the AFM images of APS coated E-glass fibres before and after water extraction also confirmed that the APS deposit contained components with different water solubility
The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico
The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic regime allowed their coexistence or caused the transition
A quantum group version of quantum gauge theories in two dimensions
For the special case of the quantum group we present an alternative approach to quantum gauge theories in
two dimensions. We exhibit the similarities to Witten's combinatorial approach
which is based on ideas of Migdal. The main ingredient is the Turaev-Viro
combinatorial construction of topological invariants of closed, compact
3-manifolds and its extension to arbitrary compact 3-manifolds as given by the
authors in collaboration with W. Mueller.Comment: 6 pages (plain TeX
Usability and Acceptability of Corneal-Plane α-opic Dosimetry in a 24 h Field Trial
Background: Ocular light exposure influences our human physiology and be- havior. Recently, an international expert group published recommendations (Brown et al., PLoS Biology, DOI: 10.1371/journal.pbio.3001571) for criterion light levels during day- time, evening and nighttime that support these non-visual influences. However, it is cur- rently unknown whether these criterion light-exposure levels are met in practice, necessi- tating wearable dosimeters. Here, we evaluated the use of a novel spectacle-mounted cor- neal-plane light dosimeter (Stampfli et al., CIE Proceedings, DOI: 10.25039/x48.2021.op18; https://light-dosimeter.ch/ accessed on 31 August 2022) to measure ocular light exposure. Methods: Eighteen (n = 18) full-time students (20.1 ± 1.6 years, 9 female) living in the Ox- ford Ring Road wore a light dosimeter-measuring photopic illuminance, CCT, α-opic ir- radiance and α-opic equivalent daylight illuminance (EDI) following CIE S 026/E:2018 as well as device tilt for a period of appr oximately 24 h in an unconstrained ecological set- ting. After the 24 h measurement period, participants completed Likert -scale question- naires probing social, usability and intrinsic motivation. Additionally, we asked for open- ended feedback and comments, which we subjected to a thematic analysis. Results: Ocu- lar light exposure profiles could be readily measured with the corneal-plane light dosim- eter, producing distinct temporal light exposure patterns that varied between different individuals. Participants rated wearing the device as acceptable and usable. The thematic analysis revealed two main themes that participants were concerned with: size, weight and stability of the device, and positive and negative reactions from other people. Con- clusion: Our study indicates that corneal-plane dosimetry may be feasible for measuring ocular light exposure in the field, leading to novel insights into the relationship between light exposure and physiological outcomes. The study highlights that for long- term use and convenience, miniaturization of sensors for use in the corneal plane may be necessary
An operational satellite scatterometer for wind vector measurements over the ocean
Performance requirements and design characteristics of a microwave scatterometer wind sensor for measuring surface winds over the oceans on a global basis are described. Scatterometer specifications are developed from user requirements of wind vector measurement range and accuracy, swath width, resolution cell size and measurement grid spacing. A detailed analysis is performed for a baseline fan-beam scatterometer design, and its performance capabilities for meeting the SeaSat-A user requirements. Various modes of operation are discussed which will allow the resolution of questions concerning the effects of sea state on the scatterometer wind sensing ability and to verify design boundaries of the instrument
The μ Switch Region Tandem Repeats Are Important, but Not Required, for Antibody Class Switch Recombination
Class switch DNA recombinations change the constant (C) region of the antibody heavy (H) chain expressed by a B cell and thereby change the antibody effector function. Unusual tandemly repeated sequence elements located upstream of H chain gene exons have long been thought to be important in the targeting and/or mechanism of the switch recombination process. We have deleted the entire switch tandem repeat element (Sμ) from the murine μ H chain gene. We find that the Sμ tandem repeats are not required for class switching in the mouse immunoglobulin H-chain locus, although the efficiency of switching is clearly reduced. Our data demonstrate that sequences outside of the Sμ tandem repeats must be capable of directing the class switch mechanism. The maintenance of the highly repeated Sμ element during evolution appears to reflect selection for a highly efficient switching process rather than selection for a required sequence element
A temperature and magnetic field dependence Mössbauer study of ɛ-Fe2O3
ɛ-Fe2O3 was synthesized as nanoparticles by a pre-vacuum heat treatment of yttrium iron garnet (Y3Fe5O12) in a silica matrix at 300-C followed by sintering in air at 1,000-C for up to 10 h. It displays complex magnetic properties that are characterized by two transitions, one at 480 K from a paramagnet (P) to canted antiferromagnet (CAF1) and the second at ca. 120 K from the canted antiferromagnet (CAF1) to another canted antiferromagnet (CAF2). CAF2 has a smaller resultant magnetic moment (i.e. smaller canting angle) than CAF1. Analysis of the zero-field Mossbauer spectra at different temperatures shows an associated discontinuity of the hyperfine field around 120 K. In an applied field, the different magnetic sublattices were identified and the directions of their moments were assigned. The moments of the two sublattices are antiparallel and collinear at 160 K but are at right angle to each other at 4.2 K
Generation of Requirements for Simulant Measurements
This TM presents a formal, logical explanation of the parameters selected for the figure of merit (FoM) algorithm. The FoM algorithm is used to evaluate lunar regolith simulant. The objectives, requirements, assumptions, and analysis behind the parameters are provided. A requirement is derived to verify and validate simulant performance versus lunar regolith from NASA s objectives for lunar simulants. This requirement leads to a specification that comparative measurements be taken the same way on the regolith and the simulant. In turn, this leads to a set of nine criteria with which to evaluate comparative measurements. Many of the potential measurements of interest are not defensible under these criteria. For example, many geotechnical properties of interest were not explicitly measured during Apollo and they can only be measured in situ on the Moon. A 2005 workshop identified 32 properties of major interest to users. Virtually all of the properties are tightly constrained, though not predictable, if just four parameters are controlled. Three parameters (composition, size, and shape) are recognized as being definable at the particle level. The fourth parameter (density) is a bulk property. In recent work, a fifth parameter (spectroscopy) has been identified, which will need to be added to future releases of the FoM
Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001
Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (~0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA)
A High Resolution Microprobe Study of EETA79001 Lithology C
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations
- …