7 research outputs found

    Generation and characterization of a mitotane-resistant adrenocortical cell line

    Get PDF
    Mitotane is the only drug approved for the therapy of adrenocortical carcinoma (ACC). Its clinical use is limited by the occurrence of relapse during therapy. To investigate the underlying mechanisms in vitro, we here generated mitotane-resistant cell lines. After long-term pulsed treatment of HAC-15 human adrenocortical carcinoma cells with 70 µM mitotane, we isolated monoclonal cell populations of treated cells and controls and assessed their respective mitotane sensitivities by MTT assay. We performed exome sequencing and electron microscopy, conducted gene expression microarray analysis and determined intracellular lipid concentrations in the presence and absence of mitotane. Clonal cell lines established after pulsed treatment were resistant to mitotane (IC50 of 102.2 ± 7.3 µM (n = 12) vs 39.4 ± 6.2 µM (n = 6) in controls (biological replicates, mean ± s.d., P = 0.0001)). Unlike nonresistant clones, resistant clones maintained normal mitochondrial and nucleolar morphology during mitotane treatment. Resistant clones largely shared structural and single nucleotide variants, suggesting a common cell of origin. Resistance depended, in part, on extracellular lipoproteins and was associated with alterations in intracellular lipid homeostasis, including levels of free cholesterol, as well as decreased steroid production. By gene expression analysis, resistant cells showed profound alterations in pathways including steroid metabolism and transport, apoptosis, cell growth and Wnt signaling. These studies establish an in vitro model of mitotane resistance in ACC and point to underlying molecular mechanisms. They may enable future studies to overcome resistance in vitro and improve ACC treatment in vivo

    CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells

    Get PDF
    The assumption that mesenchymal stromal cell (MSC)-based therapies are capable of augmenting physiological regeneration processes has fostered intensive basic and clinical research activities. However, to achieve sustained therapeutic success in vivo, not only the biological, but also the mechanical microenvironment of MSCs during these regeneration processes needs to be taken into account. This is especially important for e.g., bone fracture repair, since MSCs present at the fracture site undergo significant biomechanical stimulation. This study has therefore investigated cellular characteristics and the functional behaviour of MSCs in response to mechanical loading. Our results demonstrated a reduced expression of MSC surface markers CD73 (ecto-5’-nucleotidase) and CD29 (integrin β1) after loading. On the functional level, loading led to a reduced migration of MSCs. Both effects persisted for a week after the removal of the loading stimulus. Specifi c inhibition of CD73/CD29 demonstrated their substrate dependent involvement in MSC migration after loading. These results were supported by scanning electron microscopy images and phalloidin staining of actin fi laments displaying less cell spreading, lamellipodia formation and actin accumulations. Moreover, focal adhesion kinase and Src-family kinases were identified as candidate downstream targets of CD73/CD29 that might contribute to the mechanically induced decrease in MSC migration. These results suggest that MSC migration is controlled by CD73 CD29, which in turn are regulated by mechanical stimulation of cells. We therefore speculate that MSCs migrate into the fracture site, become mechanically entrapped, and thereby accumulate to fulfil their regenerative functions

    Topically applied virus-like particles containing HIV-1 Pr55gag protein reach skin antigen-presenting cells after mild skin barrier disruption

    No full text
    Loading of antigen on particles as well as the choice of skin as target organ for vaccination were independently described as effective dose-sparing strategies for vaccination. Combining these two strategies, sufficient antigen recognition may be achievable via the transcutaneous route even with minimal-invasive tools. Here, we investigated the skin penetration and cellular uptake of topically administered virus-like particles (VLPs), composed of the HIV-1 precursor protein Pr55(gag), as well as the migratory activity of skin antigen-presenting cells (APCs). We compared VLP administration on ex vivo human skin pre-treated with cyanoacrylate tape stripping (CSSS, minimal-invasive) to administration by skin pricking and intradermal injection (invasive). CSSS as well as pricking treatments resulted in penetration of VLPs in the viable skin layers. Electron microscopy confirmed that at least part of VLPs remained intact during the penetration process. Flow cytometry of epidermal, dermal, and HLA-DR+ APCs harvested from culture media of skin explants cultivated at air-liquid interface revealed that a number of cells had taken-up VLPs. Similar results were found between invasive and minimal-invasive VLP application methods. CSSS pre-treatment was associated with significantly increased levels of IL-1 alpha levels in cell culture media as compared to untreated and pricked skin. Our findings provide first evidence for effective cellular uptake of VLPs after dermal application and indicate that even mild physical barrier disruption, as induced by CSSS, provides stimulatory signals that enable the activation of APCs and uptake of large antigenic material

    The role of grain boundary scattering in reducing the thermal conductivity of polycrystalline XNiSn (X=Hf, Zr, Ti) half-Heusler alloys

    Get PDF
    Thermoelectric application of half-Heusler compounds suffers from their fairly high thermal conductivities. Insight into how effective various scattering mechanisms are in reducing the thermal conductivity of fabricated XNiSn compounds (X = Hf, Zr, Ti, and mixtures thereof) is therefore crucial. Here, we show that such insight can be obtained through a concerted theory-experiment comparison of how the lattice thermal conductivity κLat(T) depends on temperature and crystallite size. Comparing theory and experiment for a range of Hf0.5Zr0.5NiSn and ZrNiSn samples reported in the literature and in the present paper revealed that grain boundary scattering plays the most important role in bringing down κLat, in particular so for unmixed compounds. Our concerted analysis approach was corroborated by a good qualitative agreement between the measured and calculated κLat of polycrystalline samples, where the experimental average crystallite size was used as an input parameter for the calculations. The calculations were based on the Boltzmann transport equation and ab initio density functional theory. Our analysis explains the significant variation of reported κLat of nominally identical XNiSn samples, and is expected to provide valuable insights into the dominant scattering mechanisms even for other materials

    Relationship between clinical and radiological signs of bronchiectasis in COPD patients: Results from COSYCONET

    No full text
    corecore