5,877 research outputs found

    Retardation of Particle Evaporation from Excited Nuclear Systems Due to Thermal Expansion

    Full text link
    Particle evaporation rates from excited nuclear systems at equilibrium matter density are studied within the Harmonic-Interaction Fermi Gas Model (HIFGM) combined with Weisskopf's detailed balance approach. It is found that thermal expansion of a hot nucleus, as described quantitatively by HIFGM, leads to a significant retardation of particle emission, greatly extending the validity of Weisskopf's approach. The decay of such highly excited nuclei is strongly influenced by surface instabilities

    Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results

    Get PDF
    The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes as well as in a nanotube crystal. To analyze the interaction and determine the importance of morphology, we furthermore compare results of our ab initio calculations with a simple analytical result that we obtain for a pair of well-separated nanotubes. In contrast to traditional density functional theory calculations, the vdW-DF study predicts an intertube vdW bonding with a strength that is consistent with recent observations for the interlayer binding in graphitics. It also produce a nanotube wall-to-wall separation which is in very good agreement with experiments. Moreover, we find that the vdW-DF result for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DF. This observation suggests a framework for an efficient implementation of quantum-physical modeling of the CNT bundling in more general nanotube bundles, including nanotube yarn and rope structures.Comment: 10 pages, 4 figure

    One-body energy dissipation in fusion reaction from mean-field theory

    Full text link
    Information on dissipation in the entrance channel of heavy-ion collisions is extracted by macroscopic reduction procedure of Time-Dependent Hartree-Fock theory. The method gives access to a fully microscopic description of the friction coefficient associated with transfer of energy from the relative motion towards intrinsic degrees of freedom. The reduced friction coefficient exhibits a universal behavior, i.e. almost independent of systems investigated, whose order of magnitude is comparable with the calculations based on linear response theory. Similarly to nucleus-nucleus potential, especially close to the Coulomb barrier, there are sizable dynamical effects on the magnitude and form factor of friction coefficient.Comment: 7 pages, 10 figure

    Design and testing of a high voltage coil for the kicker magnets of CERN's Large Hadron Collider

    Get PDF
    The Large Hadron Collider (LHC), the world¹s largest proton and lead-ion accelerator, is currently under construction at CERN, Geneva, Switzerland. To extract the particle beams at the end of a physics run and in emergency situations 2 beam abort systems, built of 14 fast high-power kicker magnets each, are required. These magnets will operate at 35 kV and 30 kA with a pulse length of 90 ms and a rise time of 3 ms. A prototype magnet with a single turn high voltage coil has been built and tested. The magnet closely surrounds a ceramic vacuum tube. In order to insert this beam pipe into the magnet, the coil and the magnet have to be built in two halves which can easily be separated. The paper describes the design principles of the high voltage coil, the different options for the coil insulation material, as well as details concerning the adopted manufacturing process. The paper also describes the extensive loss-factor measurements which have been carried out as part of the acceptance tests. Finally it reports on endurance tests of the coil when mounted inside the magnet yoke and working in pulsed mode

    К ПРОБЛЕМЕ НАУЧНОЙ ОРГАНИЗАЦИИ ТРУДА ПЕДАГОГА

    Get PDF
    У статті розглянуті питання наукової організації праці педагога, особливості НОП в освітній діяльності, проблеми компетентності вчителі в умовах сучасної школи.The article deals with scientific organization of work of the teacher, especially under examination in educational activities, problems of competence of teachers in modern schools
    corecore