4,263 research outputs found

    A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention

    Full text link
    The Web has become the main platform where people express their opinions about entities of interest and their associated aspects. Aspect-Based Sentiment Analysis (ABSA) aims to automatically compute the sentiment towards these aspects from opinionated text. In this paper we extend the state-of-the-art Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA) method in two directions. First we replace the non-contextual word embeddings with deep contextual word embeddings in order to better cope with the word semantics in a given text. Second, we use hierarchical attention by adding an extra attention layer to the HAABSA high-level representations in order to increase the method flexibility in modeling the input data. Using two standard datasets (SemEval 2015 and SemEval 2016) we show that the proposed extensions improve the accuracy of the built model for ABSA.Comment: Accepted for publication in the 20th International Conference on Web Engineering (ICWE 2020), Helsinki Finland, 9-12 June 202

    A cryogenic amplifier for fast real-time detection of single-electron tunneling

    Full text link
    We employ a cryogenic High Electron Mobility Transistor (HEMT) amplifier to increase the bandwidth of a charge detection setup with a quantum point contact (QPC) charge sensor. The HEMT is operating at 1K and the circuit has a bandwidth of 1 MHz. The noise contribution of the HEMT at high frequencies is only a few times higher than that of the QPC shot noise. We use this setup to monitor single-electron tunneling to and from an adjacent quantum dot and we measure fluctuations in the dot occupation as short as 400 nanoseconds, 20 times faster than in previous work.Comment: 4 pages, 3 figure

    Transmission and quantification of verocytotoxin-producing Escherichia coli O157 in dairy cattle and calves

    Get PDF
    Data from a field study of 14 months duration in a naturally colonized dairy herd and data from an experiment with calves were used to quantify transmission of verocytotoxin-producing Escherichia coli (VTEC O157) in cattle. For the latter, two groups of 10 calves were randomly assigned and put out in one of two pastures. From each group, five animals were experimentally inoculated with 109 c.f.u. O157 VTEC and, considered infectious, put back in their group. Each of the susceptible contact calves became positive within 6 days of being reunited. The estimate of the basic reproduction ratio (R0) in the experiment was 7·3 (95% CI 3·92¿11·5), indicating that each infectious calf will infect seven other calves on average during an assumed infectious period of 28 days in a fully susceptible population. The R0 among dairy cows appeared to be about 10 times lower (0·70, 95% CI 0·48¿1·04). After the transmission experiment, six contact-infected animals that were shedding continuously during the experiment were housed in a tie stall during winter. After 40 days, all six tested negative for O157 VTEC. In June, after a period of 34 weeks in which the heifers remained negative, they were put out in a clean and isolated pasture to observe whether they started shedding again. On each pasture that was infected with O157 VTEC during the transmission experiment the previous summer, newly purchased susceptible calves were placed. None of the heifers or calves started shedding during 14 weeks, indicating that both the heifers and the previously contaminated pasture did not function as reservoir of O157 VTE

    Opening of Hess Deep rift at the Galapagos triple junction

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 3942-3950, doi:10.1029/2018GL077555.At the Galapagos triple junction, the westward propagating Cocos‐Nazca (C‐N) Rift breaks into ~0.5 Ma crust accreted at the East Pacific Rise. Rifting transitions to full magmatic seafloor spreading in the wake of the propagating tip. The 25‐km‐long Hess Deep rift is the transitional segment from rifting to spreading. Intrarift ridge (IRR), located within Hess Deep rift, is interpreted as a detachment fault, which exhumes deep‐seated rocks to the seafloor. Although transitional segments must have occurred throughout the westward propagation of C‐N Rift, IRR is the only obvious detachment fault along the base of the Rift scarps in the last ~5 Ma of its propagation. IRR formation may be in response to a decrease in spreading rate (~40 to <20 mm/yr) and presumed lower melt supply, resulting from the formation of the Galapagos microplate ~1.4 Ma, which now controls the opening at the C‐N Rift tip.D.K.S. and H.S were supported in part by WHOI.2018-10-2

    Incremental Distance Transforms (IDT)

    Get PDF
    A new generic scheme for incremental implementations of distance transforms (DT) is presented: Incremental Distance Transforms (IDT). This scheme is applied on the cityblock, Chamfer, and three recent exact Euclidean DT (E2DT). A benchmark shows that for all five DT, the incremental implementation results in a significant speedup: 3.4×−10×. However, significant differences (i.e., up to 12.5×) among the DT remain present. The FEED transform, one of the recent E2DT, even showed to be faster than both city-block and Chamfer DT. So, through a very efficient incremental processing scheme for DT, a relief is found for E2DT’s computational burden

    Aspect-Based Sentiment Analysis Using a Two-Step Neural Network Architecture

    Full text link
    The World Wide Web holds a wealth of information in the form of unstructured texts such as customer reviews for products, events and more. By extracting and analyzing the expressed opinions in customer reviews in a fine-grained way, valuable opportunities and insights for customers and businesses can be gained. We propose a neural network based system to address the task of Aspect-Based Sentiment Analysis to compete in Task 2 of the ESWC-2016 Challenge on Semantic Sentiment Analysis. Our proposed architecture divides the task in two subtasks: aspect term extraction and aspect-specific sentiment extraction. This approach is flexible in that it allows to address each subtask independently. As a first step, a recurrent neural network is used to extract aspects from a text by framing the problem as a sequence labeling task. In a second step, a recurrent network processes each extracted aspect with respect to its context and predicts a sentiment label. The system uses pretrained semantic word embedding features which we experimentally enhance with semantic knowledge extracted from WordNet. Further features extracted from SenticNet prove to be beneficial for the extraction of sentiment labels. As the best performing system in its category, our proposed system proves to be an effective approach for the Aspect-Based Sentiment Analysis

    Quasi-one-dimensional behavior of (CH3)2NH2MnCl3 (DMMC)

    Get PDF
    The heat capacity of dimethyl ammonium manganese trichloride has been investigated for 1.6&lt;T&lt;50 K. A transition to a three-dimensional antiferromagnetically ordered state has been observed at 3.60 K, which is supported by nuclear-magnetic-resonance and susceptibility measurements. The critical entropy did amount to 3.4%. The magnetic heat capacity in the paramagnetic region could be described very well by a S=52 Heisenberg linear chain system with Jk=-5.8±0.7 K. The data for kT|J|&lt;1.5, together with the earlier data on (CH3)4NMnCl3, corroborate the suggested low-temperature behavior of such a system.</p

    Tectonic structure of the Mid-Atlantic Ridge near 16°30′N

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 3993–4010, doi:10.1002/2016GC006514.The 16°30'N area of the Mid-Atlantic Ridge represents an area of present-day detachment faulting. Here we present shipboard bathymetric, magnetic and gravity data acquired up to 65 km from the ridge axis that reveal a varied tectonic history of this region. Magnetic data are used to calculate spreading rates and examine spreading rate variability along and across the axis. Bathymetric and gravity data are used to infer the crustal structure. A central magnetic anomaly 40% narrower than expected is observed along much of the study area. Misalignment between modern-day spreading center and magnetic anomalies indicates tectonic reorganization of the axis within the past 780 ka. Observed magnetic anomalies show a pattern of anomalous skewness consistent with rotation of magnetic vectors probably associated with detachment faulting. Relatively thin crust north of a small (∼7 km) nontransform offset coincides with a weakly magmatic spreading axis. In contrast, to the south a robust axial volcanic ridge is underlain by thicker crust. Variations in crustal structure perpendicular to the axis occur over tens of kilometers, indicating processes which occur over timescales of 1–2 Ma.National Science Foundation Grant Number: OCE-11556502017-04-2

    Real-time detection of single electron tunneling using a quantum point contact

    Full text link
    We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if the number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 μ\mus, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.Comment: 3 pages, 3 figures, submitte
    corecore