326 research outputs found
The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results.
Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network
Сложность алгоритмов криптографической системы Эль–Гамаля и ихэффективность
Objective. - Electrical remodeling as well as atrial contractile dysfunction after the conversion of atrial fibrillation (AF) to sinus rhythm (SR) are mainly caused by a reduction of the inward L-type Ca2+ current (ICaL). We investigated whether the expression of L-type Ca2+-channel subunits was reduced in atrial myocardium of AF patients. Methods. - Right atrial appendages were obtained from patients undergoing coronary artery bypass graft surgery (CAD, n = 35) or mitral valve surgery (MVD, n = 37). Seventeen of the CAD patients and 18 of the MVD patients were in chronic (>3 months) AF, whereas the others were in SR. The protein expression of the L-type Ca2+-channel subunits {alpha}1C and {beta}2 was quantified by western blot analysis. Furthermore, we measured the density of dihydropyridine (DHP)-binding sites of the L-type Ca2+ channel using 3H-PN220-100 as radioligand. Results. - Surprisingly, the {alpha}1C and the {beta}2-subunit expression was not altered in atrial myocardium of AF patients. Also, the DHP-binding site density was unchanged. Conclusion. - The protein expression of the L-type Ca2+-channel subunits {alpha}1C or {beta}2 is not reduced in atrial myocardium of AF patients. Therefore, the reduced ICaL might be due to downregulation of other accessory subunits ({alpha}2{delta}), expression of aberrant subunits, changes in channel trafficking or alterations in channel function
Stationary and Recurrent Properties of Atrial Fibrillation Conduction Patterns in Goat
Introduction. Electrical mapping of the atria is used to assess the substrate of atrial fibrillation (AF). Targeted ablation of the AF substrate assumes spatiotemporal stationarity. In this study we analyzed long AF recordings of AF using high-density contact mapping.Methods. In 12 goats with stable AF 10 successive 60s files were recorded, within a single AF episode. AF cycle length, fractionation index (FI), lateral dissociation, conduction velocity, breakthroughs and preferentiality of conduction (Prefi were assessed to construct AF-property maps. The Pearson correlation coefficient (PCC) between AF-property maps of consecutive recordings was calculated. Recurrence plots and recurrence quantification analysis were used to identify recurrent patterns.Results Spatiotemporal stationarity for the 6 properties were high, PCC ranged from 0.66 +/- 0.11 for Pref to 0.98 +/- 0.01 for FI. The PCC is not affected by the time delay between files. Yet, highly dynamic patterns were found. Recurrence plots revealed few (1.6 +/- 0.7) recurrent patterns in individual animals.Conclusions AF properties were stationary in stable AF. This cannot be attributed to stable recurrent conduction patterns. during This suggests that spatial properties of the atrium determine AF properties
Stroke risk in patients with device-detected atrial high-rate episodes
Cardiovascular implantable electronic devices (CIEDs) can detect atrial arrhythmias, i.e. atrial high-rate episodes (AHRE). The thrombo-embolic risk in patients showing AHRE appears to be lower than in patients with clinical atrial fibrillation (AF) and it is unclear whether the former will benefit from oral anticoagulants. Based on currently available evidence, it seems reasonable to consider antithrombotic therapy in patients without documented AF showing AHRE >24 hours and a CHA(2)DS(2)-VASc score (congestive heart failure, hypertension, age >= 75 years [doubled], diabetes mellitus, prior stroke [doubled], vascular disease, age 65-74 years and female sex) >= 1, awaiting definite answers from ongoing randomised clinical trials. In patients with AHR
Current controversies in determining the main mechanisms of atrial fibrillation
Despite considerable basic research into the mechanisms of atrial fibrillation (AF), not much progress has been made in the prognosis of patients with AF. With the exception of anticoagulant therapy, current treatments for AF still do not improve major cardiovascular outcomes. This may be due partly to the diverse aetiology of AF with increasingly more factors found to contribute to the arrhythmia. In addition, a strong increase has been seen in the technological complexity of the methods used to quantify the main pathophysiological alterations underlying the initiation and progression of AF. Because of the lack of standardization of the technological approaches currently used, the perception of basic mechanisms of AF varies widely in the scientific community. Areas of debate include the role of Ca2+-handling alterations associated with AF, the contribution and noninvasive assessment of the degree of atrial fibrosis, and the best techniques to identify electrophysiological drivers of AF. In this review, we will summarize the state of the art of these controversial topics and describe the diverse approaches to investigating and the scientific opinions on leading AF mechanisms. Finally, we will highlight the need for transparency in scientific reporting and standardization of terminology, assumptions, algorithms and experimental conditions used for the development of better AF therapies. Content List - Read more articles from the symposium: Atrial fibrillation - from atrial extrasystoles to atrial cardiomyopathy. What have we learned from basic science and interventional procedures
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
JavaCyte, a novel open-source tool for automated quantification of key hallmarks of cardiac structural remodeling
Many cardiac pathologies involve changes in tissue structure. Conventional analysis of structural features is extremely time-consuming and subject to observer bias. The possibility to determine spatial interrelations between these features is often not fully exploited. We developed a staining protocol and an ImageJ-based tool (JavaCyte) for automated histological analysis of cardiac structure, including quantification of cardiomyocyte size, overall and endomysial fibrosis, spatial patterns of endomysial fibrosis, fibroblast density, capillary density and capillary size. This automated analysis was compared to manual quantification in several well-characterized goat models of atrial fibrillation (AF). In addition, we tested inter-observer variability in atrial biopsies from the CATCH-ME consortium atrial tissue bank, with patients stratified by their cardiovascular risk profile for structural remodeling. We were able to reproduce previous manually derived histological findings in goat models for AF and AV block (AVB) using JavaCyte. Furthermore, strong correlation was found between manual and automated observations for myocyte count (r = 0.94, p < 0.001), myocyte diameter (r = 0.97, p < 0.001), endomysial fibrosis (r = 0.98, p < 0.001) and capillary count (r = 0.95, p < 0.001) in human biopsies. No significant variation between observers was observed (ICC = 0.89, p < 0.001). We developed and validated an open-source tool for high-throughput, automated histological analysis of cardiac tissue properties. JavaCyte was as accurate as manual measurements, with less inter-observer variability and faster throughput
- …