826 research outputs found

    How present am I: three virtual reality facilities testing the fear of falling

    Get PDF
    Virtual reality environments have long been used in studies related to architecture simulation. The main objective of this paper is to measure the sense of presence that different virtual reality devices provide to users so as to evaluate their effectiveness when used to simulate real environments and draw conclusions of people’s behaviours when using them. The study also aims at investigating, in a quantitative way, the influence of architectural elements on the comfort of use of a built environment, namely considering the fear of falling reported by adults while using these architectural elements. Using a between-subjects design randomly distributed between two experimental conditions (safe and unsafe), a set of three studies were conducted in three different virtual reality environments using a 5-sided-CAVE, a Powerwall or a Head Mounted Display. The study shows that immersive virtual reality devices give users a higher sense of presence than semi-immersive ones. One of the conclusions of the study is that a higher sense of presence helps to enhance the building spaces perceived impacts on users (in this case the fear of falling).info:eu-repo/semantics/publishedVersio

    Synthetic Biology Driven Biosynthesis of Unnatural Tropolone Sesquiterpenoids

    Get PDF
    Tropolone sesquiterpenoids (TS) are an intriguing family of biologically active fungal meroterpenoids that arise through a unique intermolecular hetero Diels–Alder (hDA) reaction between humulene and tropolones. Here, we report on the combinatorial biosynthesis of a series of unprecedented analogs of the TS pycnidione 1 and xenovulene A 2. In a systematic synthetic biology driven approach, we recombined genes from three TS biosynthetic gene clusters (pycnidione 1, xenovulene A 2 and eupenifeldin 3) in the fungal host Aspergillus oryzae NSAR1. Rational design of the reconstituted pathways granted control over the number of hDA reactions taking place, the chemical nature of the fused polyketide moiety (tropolono- vs. monobenzo-pyranyl) and the degree of hydroxylation. Formation of unexpected monobenzopyranyl sesquiterpenoids was investigated using isotope-feeding studies to reveal a new and highly unusual oxidative ring contraction rearrangement. © 2020 Wiley-VCH Gmb

    Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation

    Full text link
    We calculate the exponents of the threshold singularities in the photoemission spectrum of a deep core hole and its X-ray absorption spectrum in the framework of a systematic many-body theory of slave bosons and pseudofermions (for the empty and occupied core level). In this representation, photoemission and X-ray absorption can be understood on the same footing; no distinction between orthogonality catastrophe and excitonic effects is necessary. We apply the conserving slave particle T-matrix approximation (CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior systems with strong local correlations, to the X-ray problem as a test case. The numerical results for both photoemission and X-ray absorption are found to be in agreement with the exact infrared powerlaw behavior in the weak as well as in the strong coupling regions. We point out a close relation of the CTMA with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio

    Quantum shock waves in the Heisenberg XY model

    Full text link
    We show the existence of quantum states of the Heisenberg XY chain which closely follow the motion of the corresponding semi-classical ones, and whose evolution resemble the propagation of a shock wave in a fluid. These states are exact solutions of the Schroedinger equation of the XY model and their classical counterpart are simply domain walls or soliton-like solutions.Comment: 15 pages,6 figure

    Fluctuation-induced phase in CsCuCl3 in transverse magnetic field: Theory

    Full text link
    CsCuCl3 is a quantum triangular antiferromagnet, ferromagnetically stacked, with an incommensurate (IC) structure due to a Dzyaloshinskii-Moriya interaction. Because of the classical degeneracy caused by the frustration, fluctuations in CsCuCl3 have extraordinarily large effects, such as the phase transition in longitudinal magnetic field (normal to the planes, parallel to the IC wavenumber q) and the plateau in q in transverse field (perpendicular to q). We argue that fluctuations are responsible also for the new IC phase discovered in transverse field near the Neel temperature T_N, by T. Werner et al. [Solid State Commun. 102, p.609 (1997)]. We develop and analyse the corresponding minimal Landau theory; the effects of fluctuations on the frustration are included phenomenologically, by means of a biquadratic term. The Landau theory gives two IC phases, one familiar from previous studies; properties of the new IC phase, which occupies a pocket of the temperature-field phase diagram near T_N, agree qualitatively with those of the new phase found experimentally.Comment: 12 pages, revtex, 4 postscript figures, submitted to J. Phys: Condens. Matte

    Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas

    Full text link
    The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied, treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there is a power-law singularity in the absorption, I(ϵ)ϵαI(\epsilon) \propto \epsilon^{-\alpha}, with α=3/8+δ+/πδ+2/2π2\alpha = 3/8 + \delta_+/\pi - \delta_+^2/2\pi^2 where δ+\delta_+ is the forward scattering phase shift of the core hole. In contrast to previous theories, α\alpha is finite (and universal) in the limit of weak core hole potential. In the case of weak backscattering U(2kF)U(2k_F), the exponent in the power-law dependence of absorption on energy crosses over to a value α=δ+/πδ+2/2π2\alpha = \delta_+/\pi - \delta_+^2/2\pi^2 above an energy scale ϵ[U(2kF)]1/γ\epsilon^* \sim [U(2k_F)]^{1/\gamma}, where γ\gamma is a dimensionless measure of the electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-

    Dynamical Effective Medium Theory for Quantum Spins and Multipoles

    Full text link
    A dynamical effective medium theory is presented for quantum spins and higher multipoles such as quadrupole moments. The theory is a generalization of the spherical model approximation for the Ising model, and is accurate up to O(1/z_n) where z_n is the number of interacting neighbors. The polarization function is optimized under the condition that it be diagonal in site indices. With use of auxiliary fields and path integrals, the theory is flexibly applied to quantum spins and higher multipoles with many interacting neighbors. A Kondo-type screening of each spin is proposed for systems with extreme quantum fluctuations but without conduction electrons.Comment: 16 pages, 3 Postscript figure

    Resonance in One--Dimensional Fermi--Edge Singularity

    Full text link
    The problem of the Fermi--edge singularity in a one--dimensional Tomonaga--Luttinger liquid is reconsidered. The backward scattering of the conduction band electrons on the impurity--like hole in the valence band is analyzed by mapping the problem onto a Coulomb gas theory. For the case when the electron--electron interaction is repulsive the obtained exponent of the one--dimensional Fermi--edge singularity appears to be different from the exponent found in the previous studies. It is shown that the infrared physics of the Fermi--edge singularity in the presence of backward scattering and electron--electron repulsion resembles the physics of the Kondo problem.Comment: 38 pages and 1 figure, to be published in PR
    corecore