8,709 research outputs found

    Cross-grid display and computer input study Final report, Apr. - Dec. 1969

    Get PDF
    Feasibility of plasma panels as graphic display device

    Comparison of modelled and empirical atmospheric propagation data

    Get PDF
    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented

    Absence of a consistent classical equation of motion for a mass-renormalized point charge

    Full text link
    The restrictions of analyticity, relativistic (Born) rigidity, and negligible O(a) terms involved in the evaluation of the self electromagnetic force on an extended charged sphere of radius "a" are explicitly revealed and taken into account in order to obtain a classical equation of motion of the extended charge that is both causal and conserves momentum-energy. Because the power-series expansion used in the evaluation of the self force becomes invalid during transition time intervals immediately following the application and termination of an otherwise analytic externally applied force, transition forces must be included during these transition time intervals to remove the noncausal pre-acceleration and pre-deceleration from the solutions to the equation of motion without the transition forces. For the extended charged sphere, the transition forces can be chosen to maintain conservation of momentum-energy in the causal solutions to the equation of motion within the restrictions of relativistic rigidity and negligible O(a) terms under which the equation of motion is derived. However, it is shown that renormalization of the electrostatic mass to a finite value as the radius of the charge approaches zero introduces a violation of momentum-energy conservation into the causal solutions to the equation of motion of the point charge if the magnitude of the external force becomes too large. That is, the causal classical equation of motion of a point charge with renormalized mass experiences a high acceleration catastrophe.Comment: 13 pages, No figure

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Idiopathic orthostatic hypotension: Recent data (eleven cases) and review of the literature

    Get PDF
    Eight cases of Shy-Drager syndrome and three of Bradbury-Eggleston idiopathic orthostatic hypotension were examined. In all cases, examination of circulatory reflexes showed major dysfunction of the sympathetic vasoconstrictor system. Anomalies in the vagal cardiomoderator system were less constant. Normal urinary elimination of catecholamines was recorded daily. Characteristically, no elevation of blood or urine norepinephrine levels were found in orthostatism. Insulin hypoglycemia normally raised urinary adrenalin elimination in three of ten patients. Plasma dopa-beta-hydroxylase activity was normal. Renin-angiotensin-aldosterone system showed variable activity at basal state but usually rose during orthostatism. On the average, very low homovanillic acid levels were found in cerebrospinal fluid before and after probenecid; hydroxyindolacetic acid was normal. Cerebral autoregulation had deteriorated in two of four cases. Physiopathologically the two clinical types are indistinguishable with or without central neurological signs

    Geomagnetic field observations in Antarctica at the geomagnetic observatories at Terra Nova Bay and DomeC

    Get PDF
    During the 1986-87 austral summer a geomagnetic observatory was installed at the Italian Antarctic Base Mario Zucchelli Station (TNB, geographic coordinates:74.7S, 164.1E; corrected geomagnetic coordinates: 80.0S, 307.7E; magnetic local time MLT=UT-8). In the first years the measurements of the geomagnetic field were carried out only during summer expeditions. Since 1991 the recording was implemented with an automatic acquisition system operating through the year. More recently,after two short test surveys, from October 2004 a geomagnetic French-Italian observatory was installed on the Antarctic plateau (Dome C, DMC), very close to the geomagnetic pole (geographic coordinates: 75.1S, 123.4E; corrected geomagnetic coordinates:88.8S, 55.6E; magnetic local time MLT=UT-1). In this work we present some results obtained from TNB observations coming from almost twenty years of observations and also the preliminary results obtained from the analysis of the first year of data from DMC

    Surface and Buried Landmine Scene Generation and Validation Using the Digital Imaging and Remote Sensing Image Generation Model

    Get PDF
    Detection and neutralization of surface-laid and buried landmines has been a slow and dangerous endeavor for military forces and humanitarian organizations throughout the world. In an effort to make the process faster and safer, scientists have begun to exploit the ever-evolving passive electro-optical realm, both from a broadband perspective and a multi or hyperspectral perspective. Carried with this exploitation is the development of mine detection algorithms that take advantage of spectral features exhibited by mine targets, only available in a multi or hyperspectral data set. Difficulty in algorithm development arises from a lack of robust data, which is needed to appropriately test the validity of an algorithm’s results. This paper discusses the development of synthetic data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. A synthetic landmine scene has been modeled after data collected at a US Army arid testing site by the University of Hawaii’s Airborne Hyperspectral Imager (AHI). The synthetic data has been created and validated to represent the surrogate minefield thermally, spatially, spectrally, and temporally over the 7.9 to 11.5 micron region using 70 bands of data. Validation of the scene has been accomplished by direct comparison to the AHI truth data using qualitative band to band visual analysis, Rank Order Correlation comparison, Principle Components dimensionality analysis, and an evaluation of the R(x) algorithm’s performance. This paper discusses landmine detection phenomenology, describes the steps taken to build the scene, modeling methods utilized to overcome input parameter limitations, and compares the synthetic scene to truth data

    High-Resolution Slant-Angle Scene Generation and Validation of Concealed Targets in DIRSIG

    Get PDF
    Traditionally, synthetic imagery has been constructed to simulate images captured with low resolution, nadirviewing sensors. Advances in sensor design have driven a need to simulate scenes not only at higher resolutions but also from oblique view angles. The primary efforts of this research include: real image capture, scene construction and modeling, and validation of the synthetic imagery in the reflective portion of the spectrum. High resolution imagery was collected of an area named MicroScene at the Rochester Institute of Technology using the Chester F. Carlson Center for Imaging Science’s MISI and WASP sensors using an oblique view angle. Three Humvees, the primary targets, were placed in the scene under three different levels of concealment. Following the collection, a synthetic replica of the scene was constructed and then rendered with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model configured to recreate the scene both spatially and spectrally based on actual sensor characteristics. Finally, a validation of the synthetic imagery against the real images of MicroScene was accomplished using a combination of qualitative analysis, Gaussian maximum likelihood classification, and the RX algorithm. The model was updated following each validation using a cyclical development approach. The purpose of this research is to provide a level of confidence in the synthetic imagery produced by DIRSIG so that it can be used to train and develop algorithms for real world concealed target detection

    Sites of Biosynthesis of Outer and Inner Membrane Proteins of Neurospora crassa Mitochondria

    Get PDF
    Outer and inner membranes of Neurospora crassa mitochondria were separated by the combined swelling, shrinking, sonication procedure. Membranes were characterized by electron microscopy and by marker enzyme activities. A red carotenoid pigment was found to be concentrated in the outer membrane. The inner mitochondrial membrane was resolved into about 20 protein bands on polyacrylamide gel electrophoresis, whereas the outer membrane shows essentially one single protein band. Only negligible incorporation of radioactive amino acids occurs into outer membrane when isolated mitochondria are synthesizing polypeptide chains. In agreement with this observation labeling of outer membrane protein is almost entirely blocked, when whole Neurospora cells are incubated with radioactive amino acids in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Finally, the essential electrophoretic protein band from outer membrane does not become labeled when mitochondria are incubated with radioactive amino acids either in vitro or in vivo in the presence of cycloheximide. It is concluded that the vast majority, if not all, of the outer membrane protein is synthesized by the cytoplasmic system and that polypeptide chains formed by the mitochondrial ribosomes are integrated into the inner mitochondrial membrane
    corecore