5 research outputs found

    Disrupted in schizophrenia 1 (DISC1) L100P mutants have impaired activity-dependent plasticity in vivo and in vitro

    Get PDF
    Major neuropsychiatric disorders are genetically complex but share overlapping etiology. Mice mutant for rare, highly penetrant risk variants can be useful in dissecting the molecular mechanisms involved. The gene disrupted in schizophrenia 1 (DISC1) has been associated with increased risk for neuropsychiatric conditions. Mice mutant for Disc1 display morphological, functional and behavioral deficits that are consistent with impairments observed across these disorders. Here we report that Disc1 L100P mutants are less able to reorganize cortical circuitry in response to stimulation in vivo. Molecular analysis reveals that the mutants have a reduced expression of PSD95 and pCREB in visual cortex and fail to adjust expression of such markers in response to altered stimulation. In vitro analysis shows that mutants have impaired functional reorganization of cortical neurons in response to selected forms of neuronal stimulation, but there is no altered basal expression of synaptic markers. These findings suggest that DISC1 has a critical role in the reorganization of cortical plasticity and that this phenotype becomes evident only under challenge, even at early postnatal stages. This result may represent an important etiological mechanism in the emergence of neuropsychiatric disorders

    The Oncoprotein BCL11A Binds to Orphan Nuclear Receptor TLX and Potentiates its Transrepressive Function

    Get PDF
    Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain
    corecore