41 research outputs found

    Chronic Norovirus Infection after Kidney Transplantation: Molecular Evidence for Immune-Driven Viral Evolution

    Get PDF
    Background. Norovirus infection is the most common cause of acute self-limiting gastroenteritis. Only 3 cases of chronic norovirus infection in adult solid organ transplant recipients have been reported thus far. Methods. This case series describes 9 consecutive kidney allograft recipients with chronic norovirus infection with persistent virus shedding and intermittent diarrhea for a duration of 97-898 days. The follow-up includes clinical course, type of immunosuppression, and polymerase chain reaction for norovirus. Detailed molecular analyses of virus isolates from stool specimens over time were performed. Results. The intensity of immunosuppression correlated with the diarrheal symptoms but not with viral shedding. Molecular analysis of virus strains from each patient revealed infection with different variants of GII.4 strains in 7 of 9 patients. Another 2 patients were infected with either the GII.7 or GII.17 strain. No molecular evidence for nosocomial transmission in our outpatient clinic was found. Capsid sequence alignments from follow-up specimens of 4 patients showed accumulation of mutations over time, resulting in amino acid changes predominantly in the P2 and P1-2 region. Up to 25 amino acids mutations were accumulated over a 683-day period in the patient with an 898-day shedding history. Conclusion. Norovirus infection may persist in adult renal allograft recipients with or without clinical symptoms. No evidence for nosocomial transmission in adult renal allograft recipients was found in our study. Molecular analysis suggests continuous viral evolution in immunocompromised patients who are unable to clear this infectio

    A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 59, doi:10.3389/fmicb.2016.00059.Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell–cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.This research was support through funding from the Gordon and Betty Moore Foundation through Grant GBMF3301 to MJ and TM; NIH grant from the National Institute of Allergy and Infectious Disease (NIAID – 1R21Al119311-01) to TM and KW; the National Science Foundation (OCE – 1313747) and US National Institute of Environmental Health Science (P01-ES021921) through the Oceans and Human Health Program to BM. Additional financial support was provided to TM from the Flatley Discovery Lab

    Unique Features of a Global Human Ectoparasite Identified Through Sequencing of the Bed Bug Genome

    Get PDF
    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite

    Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

    Get PDF
    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite

    An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Global DNA Demethylation in Embryonic Stem Cells

    Get PDF
    Erasure of DNA methylation and repressive chromatin marks in the mammalian germline leads to risk of transcriptional activation of transposable elements (TEs). Here, we used mouse embryonic stem cells (ESCs) to identify an endosiRNA-based mechanism involved in suppression of TE transcription. In ESCs with DNA demethylation induced by acute deletion of Dnmt1, we saw an increase in sense transcription at TEs, resulting in an abundance of sense/antisense transcripts leading to high levels of ARGONAUTE2 (AGO2)-bound small RNAs. Inhibition of Dicer or Ago2 expression revealed that small RNAs are involved in an immediate response to demethylation-induced transposon activation, while the deposition of repressive histone marks follows as a chronic response. In vivo, we also found TE-specific endosiRNAs present during primordial germ cell development. Our results suggest that antisense TE transcription is a “trap” that elicits an endosiRNA response to restrain acute transposon activity during epigenetic reprogramming in the mammalian germline.ISSN:1934-5909ISSN:1875-977

    Experimentelle MRT-gesteuerte interstitielle Kryotherapie des Gehirns

    No full text

    AbklÀrung der Nierenarterienstenose

    Full text link

    Wenn die Zehen blau werden und die Niere schwarz sieht

    Full text link
    corecore