834 research outputs found

    Single Impurity Anderson Model with Coulomb Repulsion between Conduction Electrons on the Nearest-Neighbour Ligand Orbital

    Full text link
    We study how the Kondo effect is affected by the Coulomb interaction between conduction electrons on the basis of a simplified model. The single impurity Anderson model is extended to include the Coulomb interaction on the nearest-neighbour ligand orbital. The excitation spectra are calculated using the numerical renormalization group method. The effective bandwidth on the ligand orbital, DeffD^{eff}, is defined to classify the state. This quantity decreases as the Coulomb interaction increases. In the Deff>ΔD^{eff} > \Delta region, the low energy properties are described by the Kondo state, where Δ\Delta is the hybridization width. As DeffD^{eff} decreases in this region, the Kondo temperature TKT_{K} is enhanced, and its magnitude becomes comparable to Δ\Delta for DeffΔD^{eff} \sim \Delta. In the Deff<ΔD^{eff} < \Delta region, the local singlet state between the electrons on the ff and ligand orbitals is formed.Comment: 5 pages, 3 figures, LaTeX, to be published in J. Phys. Soc. Jpn Vol. 67 No.

    Wick's theorem for q-deformed boson operators

    Get PDF
    In this paper combinatorial aspects of normal ordering arbitrary words in the creation and annihilation operators of the q-deformed boson are discussed. In particular, it is shown how by introducing appropriate q-weights for the associated ``Feynman diagrams'' the normally ordered form of a general expression in the creation and annihilation operators can be written as a sum over all q-weighted Feynman diagrams, representing Wick's theorem in the present context.Comment: 9 page

    The Kondo lattice model with correlated conduction electrons

    Full text link
    We investigate a Kondo lattice model with correlated conduction electrons. Within dynamical mean-field theory the model maps onto an impurity model where the host has to be determined self-consistently. This impurity model can be derived from an Anderson-Hubbard model both by equating the low-energy excitations of the impurity and by a canonical transformation. On the level of dynamical mean-field theory this establishes the connection of the two lattice models. The impurity model is studied numerically by an extension of the non-crossing approximation to a two-orbital impurity. We find that with decreasing temperature the conduction electrons first form quasiparticles unaffected by the presence of the lattice of localized spins. Then, reducing the temperature further, the particle-hole symmetric model turns into an insulator. The quasiparticle peak in the one-particle spectral density splits and a gap opens. The size of the gap increases when the correlations of the conduction electrons become stronger. These findings are similar to the behavior of the Anderson-Hubbard model within dynamical mean-field theory and are obtained with much less numerical effort.Comment: 7 pages RevTeX with 3 ps figures, accepted by PR

    Magnetic impurity coupled to interacting conduction electrons

    Full text link
    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of an 1/N_f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to lowest order in the interaction strength. We find that their effect on the Kondo temperature, T_K, in the Kondo limit is twofold: First, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T_K. Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T_K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling.Comment: ReVTeX 19 pages, 3 uuenconded postscript figure

    Ribbed tiled vaulting: Innovation through two design-build workshops

    Full text link
    Traditional tile vaults are typically constructed springing off from walls or straight arches built from support element to support element on falsework. From these, the vault's surface can be built in space with minimal or no guidework. Built on previous research and focusing on continuous surface expression and fully representing three-dimensional equilibrium surfaces in compression, this research explores the design potential of three-dimensional networks of structural ribs, made possible by new funicular form-finding approaches. This new structural typology for tile vaults was investigated and tested through two intensive, design-build workshops in Australia, the first at the University of Technology, Sydney (UTS) in October 2012, and the second at Monash Art Design & Architecture (MADA), in May 2013

    On Linear Differential Equations Involving a Para-Grassmann Variable

    No full text
    As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other classes of differential equations (systems of first order, equations with variable coefficients, nonlinear equations) are also considered and the analogies or differences to the usual (''bosonic'') differential equations discussed

    Periodic Anderson model with correlated conduction electrons

    Full text link
    We investigate a periodic Anderson model with interacting conduction electrons which are described by a Hubbard-type interaction of strength U_c. Within dynamical mean-field theory the total Hamiltonian is mapped onto an impurity model, which is solved by an extended non-crossing approximation. We consider the particle-hole symmetric case at half-filling. Similar to the case U_c=0, the low-energy behavior of the conduction electrons at high temperatures is essentially unaffected by the f-electrons and for small U_c a quasiparticle peak corresponding to the Hubbard model evolves first. These quasiparticles screen the f-moments when the temperature is reduced further, and the system turns into an insulator with a tiny gap and flat bands. The formation of the quasiparticle peak is impeded by increasing either U_c or the c-f hybridization. Nevertheless almost dispersionless bands emerge at low temperature with an increased gap, even in the case of initially insulating host electrons. The size of the gap in the one-particle spectral density at low temperatures provides an estimate for the low-energy scale and increases as U_c increases.Comment: 11 pages RevTeX with 13 ps figures, accepted by PR

    In‐situ characterization of deposits in ceramic hollow fiber membranes by compressed sensing RARE‐MRI

    Get PDF
    Ultrafiltration with ceramic hollow fiber membranes was investigated by compressed sensing rapid acquisition relaxation enhancement (CS-RARE) magnetic resonance imaging (MRI) to characterize filtration mechanisms. Sodium alginate was used as a model substance for extracellular polymeric substances. Dependent on the concentration of divalent ions like Ca21 in an aqueous alginate solution, the characteristics of the filtration change from concentration polarization to a gel layer. The fouling inside the membrane lumen could be measured by MRI with a CS-RARE pulse sequence. Contrast agents have been used to get an appropriate contrast between deposit and feed. The lumen was analyzed quantitatively by exploring the membrane’s radial symmetry, and the resulting intensity could be modeled. Thus, different fouling mechanisms could be distinguished. CS-RARE-MRI was proven to be an appropriate in situ tool to quantitatively characterize the deposit formation during in-out filtration processes. The results were underlined by flux interruption experiments and length dependent studies, which make it possible to differentiate between gel layer or cake filtration and concentration polarization filtration processes
    corecore