517 research outputs found

    Periodic Anderson model with correlated conduction electrons

    Full text link
    We investigate a periodic Anderson model with interacting conduction electrons which are described by a Hubbard-type interaction of strength U_c. Within dynamical mean-field theory the total Hamiltonian is mapped onto an impurity model, which is solved by an extended non-crossing approximation. We consider the particle-hole symmetric case at half-filling. Similar to the case U_c=0, the low-energy behavior of the conduction electrons at high temperatures is essentially unaffected by the f-electrons and for small U_c a quasiparticle peak corresponding to the Hubbard model evolves first. These quasiparticles screen the f-moments when the temperature is reduced further, and the system turns into an insulator with a tiny gap and flat bands. The formation of the quasiparticle peak is impeded by increasing either U_c or the c-f hybridization. Nevertheless almost dispersionless bands emerge at low temperature with an increased gap, even in the case of initially insulating host electrons. The size of the gap in the one-particle spectral density at low temperatures provides an estimate for the low-energy scale and increases as U_c increases.Comment: 11 pages RevTeX with 13 ps figures, accepted by PR

    The boson-fermion model with on-site Coulomb repulsion between fermions

    Full text link
    The boson-fermion model, describing a mixture of itinerant electrons hybridizing with tightly bound electron pairs represented as hard-core bosons, is here generalized with the inclusion of a term describing on-site Coulomb repulsion between fermions with opposite spins. Within the general framework of the Dynamical Mean-Field Theory, it is shown that around the symmetric limit of the model this interaction strongly competes with the local boson-fermion exchange mechanism, smoothly driving the system from a pseudogap phase with poor conducting properties to a metallic regime characterized by a substantial reduction of the fermionic density. On the other hand, if one starts from correlated fermions described in terms of the one-band Hubbard model, the introduction in the half-filled insulating phase of a coupling with hard-core bosons leads to the disappearance of the correlation gap, with a consequent smooth crossover to a metallic state.Comment: 7 pages, 6 included figures, to appear in Phys. Rev.

    Interaction Effect in the Kondo Energy of the Periodic Anderson-Hubbard Model

    Full text link
    We extend the periodic Anderson model by switching on a Hubbard UdU_d for the conduction electrons. The nearly integral valent (Kondo) limit of the Anderson--Hubbard model is studied with the Gutzwiller variational method. The new formula for the Kondo energy contains the UdU_d-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization (this behaviour is the opposite of that found for Kondo--Hubbard models). At half-filling, we find a Brinkman--Rice-type transition which leads from a small-gap Kondo insulator to a Mott insulator.Comment: 4 pages (ReVTeX), submitted for publicatio

    Generalized Heisenberg algebras and k-generalized Fibonacci numbers

    Full text link
    It is shown how some of the recent results of de Souza et al. [1] can be generalized to describe Hamiltonians whose eigenvalues are given as k-generalized Fibonacci numbers. Here k is an arbitrary integer and the cases considered by de Souza et al. corespond to k=2.Comment: 8 page

    Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach

    Full text link
    We consider the Hubbard model with a magnetic Anderson impurity coupled to a lattice site. In the case of infinite dimensions, one-particle correlations of the impurity electron are described by the effective Hamiltonian of the two-impurity system. One of the impurities interacts with a bath of free electrons and represents the Hubbard lattice, and the other is coupled to the first impurity by the bare hybridization interaction. A study of the effective two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of a weak conduction-electron interaction (small U) reveals an enhancement of the usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 - 3), treated by the variational principle, leads to the loss of the exponential scale. The Kondo temperature T_K of the effective two-impurity system is calculated as a function of the hybridization parameter and it is shown that T_K decreases with an increase of U. The non-Fermi-liquid character of the Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe

    Co-operative Kondo Effect in the two-channel Kondo Lattice

    Full text link
    We discuss the possibility of a co-operative Kondo effect driven by channel interference in a Kondo lattice where local moments are coupled to a single Fermi sea via two orthogonal scattering channels. In this situation, the channel quantum number is not conserved. We argue that the absence of channel conservation causes the Kondo effect in the two channels to constructively interfere, giving rise to a superconducting condensate of composite pairs, formed between the local moments and the conduction electrons. Our arguments are based on the observation that a heavy Fermi surface gives rise to zero modes for Kondo singlets to fluctuate between screening channels of different symmetry, producing a divergent composite pair susceptibility. Secondary screening channels couple to these divergent fluctuations, promoting an instability into a state with long-range composite order. We present detailed a detailed mean-field theory for this superconducting phase, and discuss the possible implications for heavy fermion physics.Comment: 23 double column pages. 9 fig
    corecore